
 JDJ.SYS-CON.COM VOL.12 ISSUE:8

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM VOL.12 ISSUE:8

No. 1 i-Technology Magazine in the World

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

PLUS...

Developing Rich Internet
Applications Using Swing

IT’S A MULTI-CORE WORLD: LET THE DATA FLOW PAGE 14

SEE PAGE 31 FOR DETAILS

Introduction to
Maven

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2007

SEPTEMBER 24-26, 2007 • Santa Clara, CA

Altova® UModel® 2007 – The starting point for successful software development.

UML is a trademark or registered trademark
of the Object Management Group, Inc. in the
United States and other countries.

Visualize works
of software art

Draw on UModel® 2007, and picture

better programs based on UML™.

Spied in UModel 2007 Release 3:
l Support for all 13 UML 2.1 diagram types

l Modeling of XML Schema in UML with code
engineering capabilities
l Reverse engineering of Java and C# binary files

l Automated documentation generation in HTML,
Word, or RTF

Altova® UModel 2007, the intriguing new force

in the software design space, is the simple,

cost-effective way to draw on UML. Use it

to interpret or create your software

architecture. Decode Java or C#

programs into clear, accurate UML 2

diagrams, or outline applications and

generate code from your plans. With

all 13 diagram types, interoperability

via XMI 2.1, an artful user interface,

and more, UModel makes visual soft-

ware design practical for programmers

and project managers everywhere.

Take the mystery out of UML!

Download UModel 2007 today:
www.altova.com

UModel_JDJ.qxp 6/14/2007 4:36 PM Page 1

n a recent presentation I attended,
the speaker warmed up with a
couple of bulleted lists that outlined
the agenda of the session before

moving onto his third slide, which was
clearly the result of many days of work
stitching together PowerPoint glyphs
and figures in a sort of three dimen-
sional loop that attempted to show the
progression of software APIs around
the evolution of networked computing.
It was utterly baffling and the more I
stared at it, the more I felt I was looking
at some kind of latter day Escher draw-
ing. I gazed around the room and saw
most of the other attendees on their
laptops, distracted by their chat or e-
mail clients; however,
among those of us
who weren’t using
the session as down
time in our schedule,
I saw no one ques-
tion the meaning
of the figures or
the information it
was attempting to
convey. The speaker
was extremely proud
of it, however, and
lingered on the slide
for about 20 minutes
as he waved his arms
and spoke of REST,
ATOM, Ruby, and a
plethora of other acronyms that appar-
ently were all part of the Web 2.0 solar
system.
 This editorial isn’t a diatribe against
Web 2.0, far from it; it’s against the vast
overuse of meaningless diagrams that
presenters use to confuse, impress, and
befuddle their audience. Part of this, I
believe, stems from the speaker’s insecu-
rity in understanding the subject matter,
and seemingly complex figures are used
as a sort of crutch to fall back onto to
mask the lack of content. A lot of this
probably dates back to high school math
or science classes, where the appren-
tice PowerPoint maestro had long since
lost the plot of what the teacher was
discussing, but noticed that as some of

the problems got harder, diagrams were
introduced to help illustrate the ideas
being taught.
 To the confused yet cunning child,
the association was clear: if the teacher
could impress the audience with impres-
sive-looking figures, then in later life
when the student was given the task of
being the presenter, if they just skipped
the content part and showed figures
with boxes and lines between them,
then they too would assume the role of
authority that their teacher command-
ed. It’s sort of based on the bigger fool
theory, which states that in life you don’t
need to be smart, you just need to be
smarter than the next guy you’re trying

to fool. Rather like the
apocryphal tale of two
hunters running from
an angry bear and as
one of them stops to
put on his sneakers,
the other remarks
how he’ll never
outrun the bear; the
former replies that his
intention is to merely
outrun his partner. In
presentations if the
figure is meaningless
and has no content,
and if the goal is to
impress the audience
who are too nervous

to challenge the emperor’s naked igno-
rance, the speaker has outrun his pupils
and achieved the respect originally given
to the teacher.
 Wikipedia defines a diagram as a “sim-
plified and structured visual representa-
tion of concepts and ideas to visualize
and clarify the topic.” This definition
should apply to software as well as any
other discipline, and as a profession we
need to do more to challenge ludicrous
and meaningless figures that add no
value, and strive more toward simplic-
ity so that topics and ideas are made
more consumable and understood, and
the peddlers of complexity are run out
of town with both their sneakers firmly
tied.

From the Desktop Java Editor

Doubtful Diagrams
and Far Out Figures

 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2007 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Joe Winchester is a

software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester

I

3August 2007JDJ.SYS-CON.com

�
��

�����������������������������������
���

���
������

����������������������������
���

����������
���

��������������
�����������������������������

���������������
������������������

������
��

�����

����������� ���
����������������������

���
��

��
����������������

���
��

������������� �������
�������������

���

���������������������������������

��������� ������������������������

�������� ��������������������

������������������ ��������������

������������������������� ����������������������

����� ���������������������������� �� ������������� �������

���

5August 2007JDJ.SYS-CON.com

AUGUST 2007 VOLUME:12 ISSUE:8

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

FROM THE DESKTOP JAVA EDITOR

Doubtful Diagrams and
Far Out Figures
by Joe Winchester.................................3

PRESSROOM

Industry News
JDJ News Desk..............................6

DEVELOPMENT

Introduction to Maven
Part III – Application development management
using Maven 2 and Eclipse
by Murali Kashaboina and Geeth Narayanan18

PRODUCT REVIEW

Developing Rich Internet Applications
Using Swing
A solution based on OpenSwing & Spring frameworks
by Mauro Carniel..............................26

JSR WATCH

Estival JSRs
Changes, new chair of the JCP
by Onno Kluyt.............................34

8

by J. Stan Cox, Bob Blainey, and Vijay Saraswat

Feature

by Jim Falgout and Matt Walker

14

It’s a Multi-Core World:
Let the Data Flow

A functional parallelism paradigm that fi ts
multi-core processor architecture

JDJ.SYS-CON.com6 August 2007

Pressroom

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Group Publisher:

 Roger Strukhoff roger@sys-con.com

Advertising

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Corinna Melcon corinna@sys-con.com

Events

Events Manager:

Lauren Orsi lauren@sys-con.com

Events Associate:

Sharmonique Shade sharmonique@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Vice President, Information Systems:

 Bruno Decaudin bruno@sys-con.com

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

 Alicia Nolan alicia@sys-con.com

Industry News
HI and Esmertec K.K. Partner to Integrate Mascot-
Capsule on Esmertec’s Jbed JVM Platform
(Duebendorf-Zurich, Switzerland) – Esmertec K.K.,
a reseller of Esmertec AG’s Java solutions, and HI
Corporation have announced that HI’s 3D rendering
engine MascotCapsule V3 and V4 have been inte-
grated on Esmertec’s Jbed Java platform by Esmertec
K.K. The integration provides game developers with
a powerful platform for creating and deploying
high-quality 3D games on a broad range of mobile
handsets, ensuring a richer gaming experience
for consumers, and generating additional revenue
for operators, game publishers, and handset
manufacturers.
 Jbed is Esmertec AG’s best-in-class Java Virtual
Machine platform for mobile handsets recognized by
major handset manufacturers worldwide and already
shipped in over 120 million mobile handsets. Mascot-
Capsule is a de-facto standard 3D rendering engine in
Japan and abroad designed for creating console-qual-
ity, high-speed 3D games on mass-market mobile
handsets. The MascotCapsule series overall has been
shipped with over 230 million handsets worldwide
as of the end of December 2006. V3 and its Java API,
com.mascotcapsule, have been used to develop
mobile games worldwide. The latest release V4 is
fully compliant with the Mobile 3D Graphics API for
Java ME (JSR184) to exploit the power of hardware
acceleration.
www.esmertec.com
www.hicorp.co.jp

Xcalia Introduces XIC 5.1 with Data Access Service
(Palo Alto, CA / Paris) – Xcalia, a provider of dynamic
integration software, has announced Xcalia Interme-
diation Core (XIC) version 5.1 featuring Data Access
Service (DAS). Companies can now utilize a single so-
lution to enable access to heterogeneous data sources
based on Java, .NET and Web services. Xcalia DAS also
leverages the SDO and DAS standards (as specified
by the OASIS and Open SOA organizations), ensuring

that customers can architect their solutions in synch
with evolving industry standards initiatives.
 XIC Data Access Service (DAS) – XIC 5.1 now ex-
poses a generic Web services CRUD interface to allow
for more interoperability and easier access for clients
using any technology. XIC can now be used by any
Web service consumer programming language like
BPEL or workflow engines. The XIC DAS is deployed
in a Web services container and XIC 5.1 provides
client APIs for both Java and .NET platforms. The XIC
DAS acts as an SDO server. It publishes a logical busi-
ness model that is manipulated by client applications
through SDO. The XIC DAS defines the mapping
between the logical business model and the sup-
ported data sources. That mapping is defined once in
a single place and is shared by all client applications.
www.xcalia.com

Java Synergy: Perst Integrates with Apache Lucene
(Issaquah, WA) – McObject has announced that the
newest release of the Perst open source, object-ori-
ented pure Java embedded database system supports
integration with the widely used open source, all-Java
Apache Lucene information retrieval library, to provide
text indexing and searching within Perst databases.
 In McObject’s new Perst for Java version 2.71,
Perst functions encapsulate the Lucene indexing and
searching APIs. Developers can designate fields within
Perst object classes as full-text searchable, so that
Lucene automatically adds these fields’ contents to its
index, and provides the ability to search this indexed
material using information retrieval library features,
such as support for single- and multi-term keywords,
wildcards, proximity queries, phrase queries and rel-
evance ranking. While existing functions in Perst and
other databases support a degree of text searching,
Lucene provides a much wider range of capabilities,
available “out of the box” and proven in thousands of
deployments.
www.mcobject.com/perst
http://lucene.apache.org/

(San Jose, CA) – BEA Systems, Inc., a provider of enterprise infrastructure software, has announced the general availability

of WebLogic Server Virtual Edition, a Java application server packaged into a middleware appliance optimized for virtualized

environments. The product is designed to help reduce total cost of ownership (TCO) and deployment complexity, and marks

the first major milestone in execution of BEA’s virtualization strategy and product roadmap announced in December 2006.

 BEA WebLogic Server Virtual Edition combines the strength of WebLogic Server with BEA’s LiquidVM, a Java Virtual

Machine (JVM) that can help Java applications run more efficiently on virtualized hardware. BEA’s approach to virtualization

is designed to eliminate redundant and unused functionality in the software stack, helping to enable applications to run

directly on a hypervisor. This middleware appliance design, which is a lightweight software packaging aimed at minimizing

configuration and maximizing flexibility, can help achieve greater hardware utilization. The streamlined deployment afforded

by this approach can help reduce operating costs and help enable the agile reprovisioning of computer resources to meet the

requirements of today’s dynamic SOA services and extreme transaction processing (XTP) applications. www.bea.com

BEA Delivers WebLogic Server Virtual Edition

����������������
�������������� �����������������������

���������������������������������
���

��

���

��

��

���

�����������������������
����������������������
�����������������������
��������������������������

�����������������������
�����������������������

�
���

��
��

��
��

���
��

��
��

��
��

��
��

���
��

��
��

��
��

��
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

���
���

��
��

��
��

��
�

�
��

�
�

���
�

��
��

��
��

��
�

�
��

��
��

��
��

���
��

��
��

��
��

��
���

��
��

��
��

���
��

��
��

��
��

���
�

��
�

�
���

��
��

�
��

��
��

��
��

��
��

���
��

��
��

��
��

���
��

JDJ.SYS-CON.com8 August 2007

s software developers we have enjoyed a long trend of
consistent performance improvement from proces-
sor technology. In fact, for the last 20 years processor
performance has consistently doubled about every
two years or so. What would happen in a world where

these performance improvements suddenly slowed dramatically
or even stopped? Could we continue to build bigger and heavier,
feature-rich software? Would it be time to pack up our compilers
and go home?
 The truth is, single threaded performance improvement is
likely to see a signifi cant slowdown over the next one to three
years. In some cases, single-thread performance may even drop.
The long and sustained climb will slow dramatically. We call the
cause behind this trend the CLIP level.
• C – Clock frequency increases have hit a thermal wall
• L – Latency of processor-to-memory requests continues as a

key performance bottleneck
• IP – Instruction-level Parallelism is already fully exploited

by current processor and compiler technologies.

 To overcome these challenges the industry is looking to
multi-core and multithreaded processor designs to continue
the performance improvement trend. These designs don’t look
to improve the performance of single threads of execution, but
instead to run many and sometimes massive numbers of threads
in parallel. Wait just a minute though. Is concurrent program-
ming that easy? Hasn’t it been tried before?
 This article will dive deeper into the current issues challenging
processor performance improvement and include a high-level
overview of the key microprocessor players: Intel, AMD, Sun, and
IBM. Finally, we’ll take a deep dive into the challenges, opportu-
nities, and technologies available to Java programmers to take
advantage of concurrent programming to leverage these new
processor technologies. If you’re not programming in parallel
today, you will be soon.

Multi-Core Mania
 Increases in processor clock frequency are slowing and in
many cases are being decreased to reduce power consumption.
One trend continues though. The industry continues to shrink
the size of transistors, doubling the number of transistors on a
chip about every two years or so. In 2007 most major chip manu-
facturers will begin the shift from a 60nm to a 45nm process. This
will yield transistors about 1/2000th the width of a human hair!

To provide a relative perspective, a silicon atom itself is about
1/4nm. Obviously continuing to halve the size of transistors will
also reach a limit in the not too distant future. But that’s a topic
for another paper.
 So, how will the industry use this new transistor budget
to improve processor performance? Techniques such as
superscalar execution, pipelining, and speculative process-
ing with branch prediction have added signifi cant complex-
ity to microprocessor designs, but have also been successful
at improving performance. Unfortunately, the latency to
memory on cache misses and the high frequency of branches
in most workloads is proving to be a limiting factor. Building
ever-larger caches is one way to mitigate the memory latency
problem but as cache size exceeds common working set size,
there are rapidly diminishing returns for investing transistors
in cache memory.
 Instead, the industry is moving toward multi-core, multi-
threading, and specialization. Instead of improving the perfor-
mance of a single thread on a single core, the transistor budget
is being used to add multiple cores to a single chip. Further, in
many cases each core is capable of running multiple threads to
hide memory latency. When one thread is blocked by a long la-
tency event, such as a cache miss, the processor simply switches
to another thread to execute. Also, many chip designs now
include special-purpose processing units that make effective use
of transistors for specifi c tasks such as cryptography.
 Taking a closer look at the processors themselves, the IBM
Power is distinguished as being the fi rst to introduce multiple
cores on a chip in the Power 4 design in 2001. IBM recently
introduced the Power 6 processor, which combines two high-
performance cores on a chip with each core supporting two-
way multithreading. Besides providing multiple cores, the
Power 6 also achieved an amazing 4.7GHz clock rate showing
that IBM remains serious about single-thread performance
while keeping pace with the industry on multi-core. As Power
6 is destined to be included in high-end servers, IBM has also
focused heavily on RAS (reliability, availability, serviceability)
and virtualization.
 In the x86 architecture camp, rivals AMD and Intel have both
recently introduced multi-core processors. In 2006, Intel intro-
duced chips with two cores while chips with four cores, based on
45nm technology, shouldappear this year. As part of the move to
multi-core, Intel removed support for its version of multithread-
ing known as “hyperthreading,” although multithreading is

by J. Stan Cox, Bob Blainey,
and Vijay Saraswat

A

Feature

Multi-Core and
Massively Parallel Processors

J. Stan Cox is a senior

engineer with IBM’s

WebSphere Application

Server performance

group. In this role, he

has worked to improve

WebSphere application

performance for J2EE,

Web 2.0, Web Services,

and XML . His current

focus is WebSphere

multi-core and parallel

foundation perfor-

mance. Stan holds a

BS from Appalachian

State University (1990)

and an MS in computer

science from Clemson

University (1992).

stancox@us.ibm.com

Coming soon to a theater near you...

9August 2007JDJ.SYS-CON.com

expected to return in future designs. Not to be outdone, AMD
later this year, will introduce its fi rst four-core chip known as
Barcelona. Both Intel and AMD continue to focus on single-
thread performance as well, each introducing new innovations
in instruction-level parallelism and caches. One key difference
in their designs is the memory bus architecture. Intel is con-
tinuing with its symmetric front-side bus architecture. AMD,
on the other hand, has introduced a NUMA-based design
based on the open Hypertransport technology in hopes of al-
leviating the memory bus bottleneck.
 Sun has adopted a more radical departure in design from
prior generations of SPARC. At the end of 2005, Sun released
the UltraSPARC T1 or Niagara processor. Niagara includes
up to eight cores, signifi cantly more than competing server
processors. Sun was able to squeeze eight cores on the chip
by shifting focus away from the best achievable single-thread
performance toward high chip-level throughput. Niagara cores
run at a relatively low clock rate and don’t support out-of-order
processing, branch prediction, or many other common ILP op-
timizations. Instead they depend on four-way multithreading
to tolerate long waits for memory. The goal is to achieve high
overall throughput through application concurrency. However,
applications with lower concurrency may run signifi cantly
slower on Niagara relative to the other processors described
here.
 At this point, all of the key players are producing chips with
multiple cores but diverging in core design, memory nest, and
other important aspects. The key to success for processor de-
signers over the next few years will be in the innovative use of
their transistor budget. Architects will make strategic tradeoffs
between single-thread performance, massive concurrency,
cache sizes, power consumption, and specialized processing
units. The companies that make tradeoffs in the most innova-
tive ways to meet the demands of the market should emerge as
the winners.

Parallel Programming
 As a developer, it will be important for you to learn the
skills necessary to develop applications that can run with high
performance on these increasingly parallel processors. Since
single-thread performance isn’t likely to improve at histori-
cal rates, the developer will have to look to concurrency to
improve performance for a given task. The goal of parallel
programming is to reduce the time of a task by dividing it into
a set of subtasks that can be processed concurrently. While this
may seem simple enough, experience shows that developing
correct and effective parallel programs is surprisingly diffi cult.
To utilize parallelism in hardware effectively, software tasks
must be decomposed into subtasks, code must be written to
coordinate the subtasks and work must be balanced as much
as possible. Still sound easy? Read on.
 As you get started with parallel programming, the fi rst rule
to become familiar with is Amdahl’s Law. Amdahl’s Law says
that speeding up your program is limited by the part that’s not
running in parallel. For example, if a profi le reveals that 20% of
the time is spent in code that can only run sequentially on one
processor, then the best speed increase you can possibly get,
even with perfect parallelization of the rest of your program is
5x, no matter how many processors you throw at it. Load im-
balance is a similar problem. If you’ve divided your code into
N subtasks, the time taken to execute them is not 1/N. Rather
the time taken is the maximum of the execution times of the
subtasks.

 If getting your code divided into subtasks and ensuring that
work is well balanced sounded hard, then let us introduce
you to the coordination problem. Unfortunately, very few
programs can be parallelized so simply. The reason is that
those subtasks are likely to want to operate on the same data
and some of the subtasks may have to wait for others to do
their thing before proceeding. It’s okay if two subtasks want to
read the same memory location in parallel, but if one of them
wants to write to the location, you’ve got trouble because you
can’t predict which subtask will get to it fi rst.
 For example, operations to insert and remove objects from
a linked list must be executed so that updates to the data
structures happen sequentially and don’t corrupt each other.
An incorrect ordering of accesses to a memory location is
called a data race and it can be one of the most diffi cult bugs
to fi nd because your code might behave differently on each
run and might even change once you decide to start debug-
ging. To deal with this problem, most programming envi-
ronments include mechanisms to ensure that a subtask has
exclusive access to specifi c memory, commonly called locks.
Unfortunately locks bring their own unique problems when
multiple subtasks compete for access and, if used indis-
criminately, can reverse all of your hard work in parallelizing
your code by making subtasks wait too often or too long for
exclusive access to shared memory.

Parallel Programming in Java
 Fortunately for Java programmers, the language was
designed from the beginning with concurrency in mind. Java
includes support for threads that can be used to run parts
of your code in parallel and “monitors,” which are special
kinds of locks acquired using the synchronized keyword. The
java.util.concurrent package also makes managing threads
much easier, provides a fast HashMap for parallel programs
and “blocking queues” that can be used to pass messages
effi ciently between threads. If you’re a J2EE developer, you’re
even more fortunate because J2EE application servers such
as IBM WebSphere automatically manage parallelism for you.
For example, multiple simultaneous requests to a Web site
can be processed in parallel with multiple threads managed
by the application server and running on multiple cores.
 Creating a new thread in Java is as simple as extending the
java.lang.Thread class and overriding the run method. An-
other approach is to instantiate a new instance of the Thread
class providing an object that implements Runnable. See List-
ing 1 for a simple example of creating and running threads.
 The java.util.concurrent package provides an alternate way
to run code in parallel that takes away some of the burden of
managing threads directly. Listing 2 shows an example making
use of the ExecutorService API. While the code appears some-
what more complex than the fi rst example, one key difference
is that the number of threads executing isn’t hard-coded into
the application, only the amount of work done in each “task.”
 You may notice that the two samples we’ve looked at so
far generate output that is a random interleaving of the
words “tic” and “toc” and that the interleaving changes on
each execution. That happens because the threads execute
essentially without regard to what’s happening in other
threads1. Now let’s look at how Java helps you coordinate
multiple concurrently executing threads. The primary
mechanism used to coordinate access to shared data in Java
is a monitor. In object-oriented programming, the class is a
natural protection boundary for private instance data. So in

Bob Blainey is a Distin-

guished Engineer in the

IBM Software Group,

responsible for the

technical roadmap for

software in the era of

multi-core and related

next-generation systems

innovations. Bob is an

expert in program-

ming languages and

compilers having spent

much of his career at

IBM driving ever-greater

performance and

parallelism through

program analyses and

transformations. Imme-

diately prior to his cur-

rent position, Bob was

CTO for Java at IBM. He

is a member of the IBM

Academy of Technology,

an IBM Master Inventor,

and, most impressive of

all, manages to remain

sane with two pre-teen

daughters in the house.

blainey@ca.ibm.com

JDJ.SYS-CON.com10 August 2007

Java, every object is assigned a unique monitor. Methods
declared using the synchronized keyword automatically
enter the monitor as they get called and exit the monitor
on returning. Only one thread can be inside a monitor at
any one time, which means that if instance data is only ac-
cessed inside synchronized methods, then a data race can’t
occur. Listing 3 shows an example where multiple threads
are updating a common counter value using a monitor to
ensure that there’s no data race between any two threads.
 In some cases, use of monitors can incur too much over-
head and simpler alternatives would suffice. For example,
if hundreds of threads are involved in the counter example
in Listing 3, performance can be dominated by the time
taken to enter and exit the monitor rather than doing use-
ful work. The java.util.concurrent.atomic package provides
a few lightweight alternatives to monitors for safely updat-
ing shared locations in such busy situations. For example,
in Listing 4, an AtomicInteger object is used to safely incre-
ment a shared counter without using synchronization.
 In some cases, threads will want to wait (or block) for
a particular condition before proceeding. For example, a
thread operating on data in a stack will need to wait for
another thread to add an entry when the stack is empty.
One way to do that would be to have the thread repeat-
edly check the stack size. Java provides an easier and more
efficient way to do this, however. The consuming thread
can call the wait method on the object and, when another
thread adds an entry, it can call the notify method which
will wake up an arbitrary waiting thread. Listing 5 shows
the use of a monitor and the use of wait and notify to oper-
ate on a simple stack of integers.
 Java offers many more useful features to help you in your
parallel programming tasks. We encourage you to explore
them and learn more about parallel programming in Java
through the excellent resources listed at the end of this
article.

What Does the Future Hold?
 Even with all of this native support in Java, parallel pro-
gramming can still be very difficult. First of all, Java provides
the means to parallelize an application but does nothing to
help you design a parallel program in the first place. Further-
more, even when you have a good parallel design, there are
many challenges in achieving good performance and avoid-
ing concurrency bugs. One common problem is for synchro-
nization to cause an excessive number of threads to block.
In the worst case, all threads can block leading to deadlock.
Another more devastating problem is a race condition that
can lead to data corruption. These kinds of problems can
bring the entire application down with a memory fault or
worse can intermittently produce incorrect results. These
and other similar problems often go undetected in devel-
opment environments, showing up for the first time when
under stress in a production environment. Further, these
problems can be difficult to diagnose and debug, leading to
delays in providing fixes. While there are some good tools
available to help with problem determination, the debug-
ging problem remains vexing and standard techniques such
as adding print statements may actually make the problem
disappear or move!

X10
 Of interest to Java developers is the recent announce-
ment by IBM and several academic researchers of a new
programming language called X10. X10 is a set of extensions
to Java providing higher-level constructs specifically for
parallel application development. The X10 programming
environment is now an open source project at http://x10.
sourceforge.net/.
 The goals of X10 include managing both concurrency and
the distribution of data and providing constructs to greatly
simplify the task of concurrent programming. A central con-
cept in X10 is the notion of a place. A place is an abstraction
for a collection of related data and activities that operate
on that data. A computation may have many places. Places
serve as units of distribution – for instance, different places
may be located at different nodes of a cluster. An object is
created in one place and lives in that place throughout its
lifetime. However, all places in a computation are part of the
same address space. That is, an object located in one place
may contain references to objects located at another place.
 Objects are operated on by activities. Activities are much
like threads in Java, except that they may be very light-
weight – for instance, an activity may execute only a few
instructions in its lifetime. An activity may read and write
variables, invoke methods, execute control statements,
catch and throw exceptions – in short, perform the actions
that any Java thread can perform. X10 makes it very easy for
a programmer to write code that creates a new activity: the
statement async S specifies that the statement S is to be ex-
ecuted in its own separate task, which executes in parallel.
Listing 6 shows that achieving the parallel Java tasks shown
in Listing 1 is quite simple in X10.
 Along with spawning activities, X10 supports the notion
of joining activities, that is, determining when a collection
of activities has terminated. The statement finish S specifies
that statement S is to be executed and, if during the execution
of S any activities are created, these activities must terminate
before any following statement begins executing. Thus a
programmer may use finish to specify an order on activities.
 Unlike Java, X10 doesn’t support locks. Instead, X10 pro-
vides a very simple construct for the programmer to specify
atomicity of execution. The statement atomic S is executed
as if in a single step (with all other activities frozen). Listing
7 shows that achieving the atomic increment shown in List-
ing 3 is also easy in X10.
 The wait/notify behavior shown in Listing 5 is accom-
plished in X10 using the simple keyword when. Listing 8
shows the same simple integer stack implemented in X10.
Notice that the pop() method uses when to cause the thread
to wait for a specific condition. The notify is implicit in the
action of the push and doesn’t require explicit coding by the
programmer.
 We have only scratched the surface of X10 features for
concurrent programming. More thorough and complex
examples of parallel programming in X10 are provided at
http://x10.sourceforge.net/.

Summary
 While performance improvement for single threads
may slow significantly over the coming years, proces-

Feature

Vijay Saraswat joined IBM

Research in 2003 after

a year as a professor at

Penn State, a couple of

years at start-ups, and

13 years at Xerox PARC

and AT&T Research. His

main interests are in

programming languages,

constraints, logic, and

concurrency. At IBM, he

leads the work on the

design and implementa-

tion of X10, a modern

object-oriented program-

ming language intended

for scalable concurrent

computing. Over the

last 20 years he has

lectured at most major

universities and research

labs in U.S.A. and Europe.

Vijay got a B Tech degree

from the Indian Institute

of Technology, Kanpur,

and an MS and PhD

from Carnegie-Mellon

University. His thesis on

concurrent constraint

programming won the

ACM Doctoral Dissertation

Award in 1989, and a

related paper won a best-

paper-in-20-years award in

its area.

vsaraswa@us.ibm.com

RARE OCCURRENCE.
For a limited time, upgrade to Crystal Reports® XI for only $99. Create brilliant
reports in minutes and speed report integration so you can focus on what you
do best — core application coding. A great price with this depth of features is a
rare occurrence, indeed.

• .NET, Java™ and COM SDKs
• Unlimited free runtime for internal corporate use
• Includes Crystal Reports Server – embed report management services
• Includes crystalreports.com — share reports over the web

• Unlimited installation-related support

Act fast. Go to www.businessobjects.com/rareoccurrence
or call 1-888-333-6007 today.

© 2007 Business Objects. All rights reserved. Business Objects and the Business Objects logo, Business Objects and Crystal Reports are trademarks or registered trademarks of Business Objects in the
United States and/or other countries. All other names mentioned herein may be trademarks of their respective owners.

NOW $99
UPGRADE
$395 NEW

oror

JDJ.SYS-CON.com12 August 2007

sors will provide significantly expanding concurrency. For
software performance to continue to improve, developers
must begin thinking and coding in parallel. Fortunately, the
Java programming language was designed for concurrency.
Java provides all of the basic constructs for threading and
locking. However, parallel programming is still very difficult
due to inherent complexities such as dividing sequential
tasks into balanced subtasks and avoiding race condi-
tions and deadlocks. IBM has recently introduced a new
programming language called X10 that runs on top of Java
and significantly simplifies many of the tasks of parallel
programming.

Resources
1. http://www.ibm.com/developerworks/power/newto/
2. http://www.sun.com/processors/niagara/
3. http://www.ibm.com/power
4. http://www.intel.com/multi-core/index.htm
5. http://multicore.amd.com
6. Brian Goetz. “Java Concurrency in Practice.” http://www.
 briangoetz.com/pubs.html
7. Brian Goetz series of articles on developerWorks. http://

www.ibm.com/developerworks/java/library/j-jtpcol.html
8. http://www.oreilly.com/catalog/jthreads3/
9. X10 http://x10.sourceforge.net/

Feature

Listing 1: Parallel Threads in Java
Thread t1 = new Thread (new Runnable() {

 public void run() { while(true) { System.out.println(“tic”); }}

});

Thread t2 = new Thread (new Runnable() {

 public void run() { while(true) { System.out.println(“toc”); }}

});

t1.start(); t2.start();

Listing 2: Pooled Parallel Threading in Java
ExecutorService svc = Executors.newCachedThreadPool();

Future tic[] = new Future[10], toc[] = new Future[10];

for (int i=0; i<10; i++) {

 tic[i] = svc.submit (new Runnable() {

 public void run() { for(int i=0; i<10; i++) System.out.

println(“tic”); }

 });

 toc[i] = svc.submit (new Runnable() {

 public void run() { for(int i=0; i<10; i++) System.out.

println(“toc”); }

 });

}

 try {

 for (int i=0; i<10; i++) {

 tic[i].get(); toc[i].get();

 }

 } catch (InterruptedException e1) {

 return;

 } catch (ExecutionException e2) {

 return;

 }

Listing 3: Synchronized Updates
public class Counter {

 private int ctr = 0;

 public synchronized void Increment(int k) { ctr += k; }

 public synchronized void Decrement(int k) { ctr -= k; }

}

Listing 4: Atomic Increment
import java.util.concurrent.atomic.AtomicInteger;

public class AtomicCounter {

 AtomicInteger ctr = new AtomicInteger(0);

 public void Increment(int k) { ctr.addAndGet(k); }

 public void Decrement(int k) { ctr.addAndGet(-k); }

}

Listing 5 : Wait and Notify

private Node top = null;

public synchronized void push (int x) {

 Node newNode = new Node(x,top);

 top = newNode;

 notify();

}

public synchronized int pop() {

 while (top == null) {

 try { wait(); }

 catch (InterruptedException e) { }

 }

 int result = top.data;

 top = top.next;

 return result;

}

Listing 6: Parallel tasks in X10

 while (true) {

 async System,out.println(“tic”);

 async System,out.println(“toc”);

 }

Listing 7: Atomic Increment in X10

 atomic ctr = ctr + 1;

Listing 8: Wait/Notify in X10
private nullable<Node> top = null;

public void push (int x) {

 Node newNode = new Node(x,top);

 Atomic top = newNode;

}

public int pop() {

 when (top != null) {

 int result = top.data;

 top = top.next;

 return result;

}

}

JBoss Enterprise Application Platform is the market leading platform for

next generation enterprise Java applications. Built on open standards,

JBoss Enterprise Application Platform integrates JBoss Application Server,

Hibernate, and Seam into a complete, simple enterprise solution for Java

applications. Integrated, simplified and delivered by the leader in enterprise

open source software.

© 2007 Red Hat Middleware, LLC. All Rights Reserved.

JDJ.SYS-CON.com14 August 2007

he multi-core buzz is everywhere. Pick up a newspa-
per and the local electronics mega-store is advertis-
ing multi-core desktops and laptops to the consumer.
Interesting, but what does it mean to the everyday
Java programmer? Maybe nothing. If you live in the

application server world writing EJB-based applications your
application server does most of the heavy lifting for you. It
handles concurrency just fi ne. But that doesn’t cover all appli-
cations. Multi-core technology will especially affect applica-
tions that must process large amounts of data in a non-trans-
actional (outside of a database context) manner. For this class
of applications, the implications of multi-core are huge.
 Why? Well fi rst, notice the processing speeds of multi-core
processors. They’re not getting faster. In fact, they may be
slowing down. As manufacturers add more cores to a chip,
the processing speed of each core is usually slowed down
to prevent overheating. The 80-core chip that Intel dem-
onstrated recently wasn’t 80 cores of x86 architecture but a
simpler architecture. This may be an industry trend as more
and more cores are squeezed onto a chip. The processor
architecture may become heterogeneous, with a few full-
power “legacy” cores and many specialized cores. The IBM
Cell architecture already employs this scheme, with a single
PowerPC core at the center and eight SPU cores connected
using high-speed interconnects.
 One implication you should take away from all of these
processor changes: your single-threaded application may
actually slow down on a multi-core system. If you need faster
runtimes to meet shrinking SLA windows, you ‘ll have to
multithread your applications, now! No problem, right? Java
has included the java.util.concurrent package since Java5.
This library contains many powerful constructs from which
you can build a fully concurrent and scalable application.
But, that isn’t always easy or straightforward. The java.util.
concurrent package is a set of building blocks that you must
master and put to good use. There are several good books
on this subject. We highly recommend Java Concurrency in
Practice by Brian Goetz, for one.
 There’s a technology that’s been around for years called
datafl ow that can solve the multi-core dilemma. How? This
article will go into detail about datafl ow, but the gist is this:
datafl ow provides a functional parallelism paradigm that
fi ts well into multi-core processor architecture. A datafl ow
instance consists of a directed graph of processing nodes

connected with FIFO data queues. This pipelined architec-
ture lets applications be built from small-size reusable com-
ponents stitched together with queues. The diagram below
gives a small example of datafl ow graph. Since it’s a pipelined
architecture, it naturally takes advantage of many processing
cores. But more on that later.

First, we’ll cover the overall nature and architecture of
datafl ow technology, specifi cally focusing on datafl ow in
software. Then we’ll cover the history of datafl ow technology,
how it was fi rst conceived and has matured and morphed
over the years. Then we’ll discuss several implementations
of datafl ow technology that exist in the marketplace today,
highlighting a Java implementation. Read on for a peek into a
technology that may have been ahead of its time but appears
poised for the new multi-core world.

Yet Another Programming Paradigm
 You may be asking: why another programming paradigm?
First, the languages we have available to us don’t directly sup-
port the needs of application builders. As mentioned before,
the java.util.concurrent package provides most of the con-
structs needed to build scalable applications. However, these
are lower-level building blocks. It can take many months to
become familiar with these constructs and apply them right.
 Second, the programming frameworks that have tradition-
ally been used to build highly scalable applications have been
targeted at the academic and scientifi c community. Frame-
works such as MPI and OpenMP have been used to solve very
large complex problems, taking advantage of some of the
world’s largest computers and computer grids. However, the
confl uence of the information explosion with the availability

Jim Falgout is a

solutions architect for

Pervasive Software,

where he applied

datafl ow principles to

help architect Pervasive

DataRush. Jim is active

in the Java development

community; this May,

he presented a technical

paper titled “Unleashing

the Power of Multi-Core

Processors: Scalable

Data Processing in Java

Technology” at JavaOne.

jfalgout@pervasive.com

by Jim Falgout and Matt Walker

T

A functional parallelism paradigm
that fi ts multi-core processor
architecture

Feature

It’s a Multi-Core World:
 Let the Data Flow

Figure 1 A simple dataflow diagram illustrating the base concepts

15August 2007JDJ.SYS-CON.com

of very inexpensive, off-the-shelf hardware has put high-per-
formance computing within reach of even small and medium-
sized businesses. These businesses have ever-increasing
demands to process more data in shorter time periods. What
they don’t have is a staff of concurrent programming experts.
 On the one extreme we have Java and all of the function-
ality that it provides. The building blocks to create scalable
applications are there, but a cost must be paid to tap into this
functionality. On the other extreme are frameworks such as
MPI and OpenMP. Again, they provide high functionality, but
have traditionally been used by the academic and scientific
computing world. They are not easy tools to use. Something is
needed to bridge this gap to provide high-performance, highly
scalable data processing to the business world. Dataflow tech-
nology can be one way to bridge that gap.

Dataflow Programming Model
 Dataflow is an alternative to the standard von Neumann
model of computation. Typically, we think of a program as
a series of instructions each executed one after the other by
a processor keeping track of its progress with an instruction
pointer. In dataflow, on the other hand, channels transmit-
ting data in one direction join computations to one another.
Conceptually, you can think of this structure as a directed
graph with data channels as edges and processes performing
computation on the data as nodes. The processes each oper-
ate only when data is available — the data flowing through the
network is all that’s needed to organize the computation. The
immediate advantage is that many of the processes can be
operating simultaneously, thus allowing dataflow applications
to take advantage of hardware with multiple processor cores.
Notice the concurrency happens external to the process;
the developer doesn’t have to bother with threads, deadlock
detection, starvation, or concurrent memory access to build
parallelism into his application.
 This type of implicit parallelism stands in stark contrast to
the concurrency mechanisms of many other programming
paradigms. Gone are the locks of concurrent programming in
imperative languages like C, which lack composability — two
correct snippets of code using locks may not be correct when
they’re combined. Dataflow, on the other hand, allows com-
posability: as long as the I/O contract is correct, sub-graphs
may replace nodes or be spliced between them in the original
dataflow network. This facilitates both program correctness,
since sub-graphs can be tested as they’re constructed then
linked together to form larger programs, and code reuse,
since commonly used sub-graphs can be copied from one
application to the next.
 Dataflow process networks bear some relationship to the
dataflow variables of declarative programming languages like
Oz. A dataflow variable is simply an unbound variable whose
value can only be determined by a separate thread operat-
ing in parallel. If the dataflow variable is referenced before it’s
been bound, the referencing thread pauses awaiting the value.
Combined with a single-assignment store (variables can be
bound once at most), these variables lead to the nice property
that it doesn’t matter in what order we evaluate simultaneously
executing expressions. Likewise, the outcome of a dataflow
network is determined uniquely by its input, regardless of the
order in which processes fire. Firing order impacts queue sizes
and performance, of course, but this can be dealt with else-
where besides explicitly within the program itself, dramatically
simplifying the task of the dataflow programmer.

The History of Dataflow
 In the early 1970s, many people grew skeptical of the von
Neumann architecture’s ability to cope with parallelism. The
global instruction pointer and memory could both become
bottlenecks in concurrent software if it wasn’t carefully
designed. Dataflow architecture arose as the only compelling
competitor. Designed with concurrency in mind, it eliminated
the global instruction pointer and memory by organizing the
computation based on the flow of data through a network of
processes. However, these radically different architectures
proved difficult compiler targets for traditional imperative
programs. Dataflow programming and languages arose in
response to this need.
 At this time, Jack B. Dennis developed the static dataflow
model and applied it to the design of computer architectures.
His model limited nodes to primitive computations, and the
edges were seen as representing data dependencies among the
various operations occurring in the network — they held only
one data token at a time. The work of Gilles Kahn extended this
idea in two ways. First, the edges of his dataflow graphs were
unbounded first-in, first-out queues, providing for a flexible
rate of flow across each node. Second, he allowed each node to
be a complete sequential process, which is often called large-
grain dataflow. This approach tends to be more effective in
creating efficient software since the threads implementing pro-
cesses are given a larger fraction of work, reducing the amount
of time spent switching between them. Further, the model
freed the concept of dataflow from defining the language of its
processes. Now it was conceivable to implement them in stan-
dard programming languages such as C or Java but still have
the network of code operate according to dataflow principles.
 Though the potential for distinguishing between the process
language and the language or mechanism for coordinating
these processes was recognized early on, it wasn’t until the

Matt Walker is a re-

searcher in the Pervasive

Software Innovation Lab,

seeking a deeper under-

standing of concurrent

programming techniques

to improve the Pervasive

DataRush framework for

dataflow programming in

Java. He holds a master’s

in computer science

from UT.

mwalker@pervasive.com

 Figure 2 The programming paradigm difference between the von Neumann model and dataflow

JDJ.SYS-CON.com16 August 2007

late 1980s and early 1990s that the idea drew much attention.
Thomas M. Parks presented a Kahn process network schedul-
ing policy in his PhD thesis that ensured bounded queues for
infinite inputs, making practical implementations realizable.
Simultaneously, projects focused on the software engineer-
ing aspects of dataflow began showing up. While not techni-
cally dataflow because it doesn’t obey the dataflow execution
model, J. Paul Morrison’s flow-based programming explored
the reusability of large-grain processes implemented in
common programming languages. He applied these ideas to
large systems in the banking industry, empirically measuring
an improvement in programmer productivity. More modern
frameworks combine the engineering benefits of languages
such as Java with the dataflow execution model.

Application and Existing Implementations
 Now that you have some background in dataflow technol-
ogy, you’re probably starting to see applications for it. The
traditional arena for dataflow is signal processing, since that’s
where it got its start. And dataflow is still used in that area
of the industry today. This is especially true in the academic
world. A quick search for dataflow on the Web will show
many universities with research activity in the area of signal
processing using dataflow technology.
 Along those lines, the LabVIEW toolset created by National
Instruments has an architecture based on dataflow technol-
ogy (http://www.ni.com/labview/). The outstanding user
experience offered by this toolset lets a user build up a data-
flow graph of data collection and data processing nodes very
quickly. It appears to have used dataflow concepts as more of
a functional paradigm than for performance. However, with
the advent of multi-core and the availability of processing
power at much more affordable price points, the LabVIEW
toolset is poised to provide highly scalable processing due to
its use of dataflow architecture.
 There are other applications for dataflow technology
beyond signal processing. The pipeline nature of dataflow
implementations provides a natural fit for data processing
applications. Since the data is pipelined in a dataflow archi-
tecture, massive amounts of data can be processed in a highly
scalable way. This ability implies that dataflow techniques can
be applied to many industry problems, including:
• Data mining and data warehousing
• Data analytics and business intelligence
• ETL (extract, transform, and load) processing
• Data quality
• Fraud detection

 One of the hybrid approaches to dataflow implementation
has been used to create massively scalable data processing
engines. Way back in the 1990s, a start-up company called
Torrent created a C++-based dataflow framework named Or-
chestrate. This framework implemented dataflow techniques

and could run across a cluster of homogeneous systems.
Several Torrent customers created business intelligence appli-
cations using this dataflow framework. Torrent was eventually
acquired by Ascential, which was then acquired by IBM in
2005.
 Another data processing engine using dataflow architec-
ture has been built with 100% Java technology. This engine,
available from Pervasive Software, uses more of the style of
flow-based programming (www.pervasivedatarush.com).
It’s currently available as part of a free public beta program
sponsored by Pervasive. See the sidebar for more information.

Conclusion
 As the information age and the multi-core wave continue
to collide, more pressure is exerted on software developers to
provide access to increasingly inexpensive computing horse-
power. High-performance computing was once the domain
of system experts, government agencies and universities. Now
it’s in demand by large as well as medium-sized companies
with massive amounts of data to process and shrinking time
windows. Compute power that used to cost millions is now
available in systems that can be ordered on the Web for $20k.
 All of this leads to the need for a better programming
paradigm: a paradigm that encourages the developer to build
highly performing and scalable software without the burden of
low-level system knowledge. Dataflow is one such paradigm.
Dataflow, being a pipelined architecture, is inherently scal-
able. And as we’ve pointed out, dataflow concepts have been
around for many years. They’ve undergone change and growth
as the ideas have matured in the academic community.
 There are also several commercial implementations of
dataflow in the marketplace, a sign that dataflow technology
is real and has many benefits to bring to the software develop-
ment community. We encourage you to investigate dataflow
concepts and determine how they can fit into your software
architectures going forward.

Resources
• Johnston, Hanna, and Millar. “Advances in Dataflow

Programming Languages.” 2004. http://portal.acm.org/
citation.cfm?id=1013208.1013209

• Najjar, Lee, and Gao. “Advances in the Dataflow
Computational Model.” 1999. http://ptolemy.eecs.berke-
ley.edu/publications/papers/99/dataflow/

• Parks. “Bounded Scheduling of Process Networks.”
1995. http://ptolemy.eecs.berkeley.edu/publications/
papers/95/parksThesis/

• Harris, Marlow, Jones, and Herlihy. “Composable Memory
Transactions.” 2006. http://research.microsoft.com/
~simonpj/papers/stm/#composble

• Van Roy and Haridi. “Concepts, Techniques, and Models
of Computer Programming.” 2004.

 http://www.info.ucl.ac.be/~pvr/book.html

Feature

Dataflow is an alternative to the standard
von Neumann model of computation”“

17August 2007

 The article on dataflow concepts introduced you to dataflow technology and its relevance to

multi-core processing. Here we’ll discuss an implementation of dataflow technology built with

Java. The application framework is called Pervasive DataRush and is currently in beta release from

Pervasive Software.

 DataRush is an application development framework. Its purpose is to enable the user to build data

processing applications that can easily take advantage of multi-core processors to produce highly scal-

able software. DataRush implements many dataflow concepts and extends some of these concepts to

provide several ways to dramatically increase scalability of applications.

 DataRush implements a scripting language, based on XML that provides the means to create

reusable components and data processing applications. This language, called DFXML (dataflow

XML), is simple in syntax and very flexible. DFXML is used to compose what are called assemblies.

An assembly is a composite operator and can be composed of other assemblies, processes, and

customizers. A process is the lowest level of operator. It’s written in Java and performs the work

in the dataflow graph. A customizer is a compiler helper also written in Java that enables the

dynamic nature of the DataRush framework. DataRush includes a component library that consists

of more than 50 pre-built, ready-to-use components provided by the framework. Included are

components that provide connectivity to data and data processing components such as sort, join,

merge, lookup, group, and so on.

 The architecture block diagram in Figure 1 depicts the high-level architecture of the DataRush

framework.

 The user utilizes an IDE such as Eclipse to create DFXML assemblies and Java processes and custom-

izers (http://www.eclipse.org). The DataRush assembler is used to convert DFXML scripts into a binary

form. The DataRush execution engine is then invoked to compile the binary files into a dataflow graph

for execution. This compilation step is run for every engine instantiation, providing a very dynamic

graph-generation capability. Once the dataflow graph is generated, the DataRush engine creates

threads and dataflow queues representing the graph and executes the graph. Execution monitoring is

provided via JMX.

Dataflow Implementation

 The Pervasive DataRush framework implements many of the basic structures of dataflow. Process-

ing nodes (processes in DataRush) are built in Java and interface using dataflow queues. The dataflow

queues in DataRush are typed and support native Java types besides string, date, timestamp, and

binary.

 The dataflow queues in DataRush are somewhat comparable in functionality to the blocking

queue implementations in the java.util.concurrent package introduced in the Java 5 release. They’re

both memory-based queues that block readers on empty queues and block writers of full queues.

The DataRush queues, however, must support deadlock detection and handling. Due to support for

multiple queue readers and the fact that processes can have multiple inputs and outputs, cycles

of dependencies can be created in a dataflow graph. These cycles can lead to deadlock, whereby

writers and readers are waiting in a way that needs intervention for the graph to continue working.

A deadlock algorithm in the DataRush engine detects deadlock situations and handles it, normally by

temporarily expanding the size of the problematic queue.

 Besides the pipeline scalability that a dataflow architecture already provides, the Pervasive

DataRush framework has built-in support for two other types of scalability: horizontal partitioning

and vertical partitioning. Horizontal partitioning replicates a section of dataflow logic and seg-

ments the input data into chunks, flowing the data concurrently through the replicated dataflow

sections. Figure 2 depicts this scenario using a lookup component as an example. In this example,

the lookup operator is replicated with a data partitioner spreading the data load evenly to each

lookup instance. This lets each lookup operator run in parallel, fully utilizing multiple cores on the

system. Vertical partitioning supports running different dataflow logic in

parallel on each field of an input stream. Figure 1 shows the high-level architecture of the

Pervasive DataRush framework including design and execution components. The user utilizes

an IDE such as Eclipse to create DFXML assemblies and Java processes and customizers. Figure 2

exemplifies horizontal partitioning, one of three types of scalability, which can be implemented

using Pervasive DataRush. Horizontal partitioning replicates a section of dataflow logic and seg-

ments the input data into chunks, flowing the data concurrently through the replicated dataflow

sections.

Why Java?

 As the article on dataflow points out, there have been many instantiations of dataflow technology

over the years. Most of them have been implemented in C or C++. This makes sense due to the prevalence

of C and C++ when the systems were built. When DataRush was first being developed, the decision was

made to use Java as the programming language. This decision was based on several factors: portability,

flexibility, extensibility, and scalability – and you can throw in productivity for good measure. The decision

was also based on the high level of industry investment in JVM technology. Over the past few years, we’ve

seen significant performance improvements with each JDK release. Also, the amount of open source

libraries available is astounding. With such a rich environment, the decision has proved to be a good one.

 The question always arises about Java and performance. What we’ve found, with the introduction

of the java.nio package and other JVM performance enhancements, is that native speeds can be

obtained from Java. This is especially true for frameworks like DataRush in which a static set of classes

(the process nodes) are utilized over a relatively long period of time. This scenario provides an environ-

ment well suited for JIT compilers.

A Simple Benchmark

 To demonstrate the scalability of the DataRush framework, we developed a simple benchmark

implementing a one-pass K-means algorithm. The algorithm takes two double-typed values as points

and clusters the points into like groups. The benchmark measures the performance of running

K-means on 100 input columns over 10 million rows of data. For this particular test, the input data

is generated. As can be seen from Figure 3, the performance of the benchmark test improves as

more CPU resources are made available. These benchmark results of a K-means test run on an 8-core

machine demonstrate how a non-parallelized application fails to scale as more compute resources are

added. A snapshot of the CPU utilization is also provided, showing that the DataRush framework was

able to keep the machine heavily utilized for the duration of the test. Figure 4 shows CPU usage during

the K-means benchmark, the Pervasive DataRush platform has scaled to take full advantage of all 8

cores available on the machine used for this test.

Conclusion

 The DataRush application development framework implements dataflow concepts that enable Java

programmers to create highly scalable applications that can process many million rows of data. The

framework is currently in beta release and can be downloaded at http://www.pervasivedatarush.com.

DataRush is built completely in Java and so is easy to install and begin using right away. A user inter-

face in the Eclipse IDE is being developed, so please check back with the site periodically for updates

on that development. The site also includes more information on DataRush and forums for discussion

and questions.

Pervasive DataRush: A Dataflow Implementation by Jim Falgout

 Figure 1 DataRush architecture block diagram Figure 2 Horizontal partitioning

 Figure 3 K-means results Figure 4 CPU snapshot

JDJ.SYS-CON.com

JDJ.SYS-CON.com18 August 2007

n the parts 1 and 2 of this article, we
demonstrated how to download and
install Maven 2, how to install the Ma-
ven 2 plugin for Eclipse, and how to go

about setting up a project directory struc-
ture using Maven 2. We used a simple use
case for displaying employee details on
the Web given an employee ID, but delib-
erately made the design a bit complex by
introducing design concepts such as XML
binding, EJBs, and JCA connectors to il-
lustrate a few of the many features offered
by Maven. In this final installment of the
article, we continue with the remaining
modules in our example and illustrate a
few more developmental tasks that can be
accomplished fairly easily using Maven
that otherwise would demand significant
time and effort to accomplish.
 As described earlier, the ‘connector’
module yields a RAR artifact containing
a JCA connector that uses ‘xmlBinding’
classes to return Employee information.
This means that the ‘connector’ module
will have a dependency on the ‘xmlBind-
ing’ artifact and any artifact that can
provide JCA classes. We’ll use Maven’s ‘Add
Dependency’ feature in Eclipse to add
these dependencies as described below.
1. In the Eclipse ‘Package Explorer’ pane,

right-click on the ‘connector’ module’s
POM file and in the menu, select ‘Add
Dependency’ Maven2 option as shown
in Figure 1.

2. A dialog window to search for artifacts
in the Maven repository will be dis-
played. In the search box, type ‘com.
somecompany.’ The search results will
be displayed in the text area as shown
in Figure 2.

3. Expand the ‘com.somecompany xml-
Binding’ result entry, select the ‘xml-
Binding-1.0.jar’ option, and click the
‘OK’ button. The dependency on the
‘xmlBinding’ artifact will be added in
the POM file.

4. To add JCA specification classes, we’ll
use a Geronimo JCA specification
artifact as a dependency. Following the
same approach as described before,
search for ‘geronimo’ in the repository
search window and select ‘geronimo-
spec-j2ee-connector-1.0-M1.jar’ as a

dependency to be added as shown in
Figure 3.

5. The two dependencies will be added
to the POM file. The scope element
should be added to the ‘geronimo-spec-
j2ee-connector’ dependency element
with a value of ‘provided’ indicating
that JCA classes will be provided by
the underlying J2EE application server.
Below is the modified POM.

<project>

 <parent>

 <artifactId>EmployeeInfo</artifactId>

 <groupId>com.somecompany</groupId>

 <version>1.0</version>

 </parent>

 <modelVersion>4.0.0</modelVersion>

 <artifactId>connector</artifactId>

 <packaging>rar</packaging>

 <name>connector</name>

<dependencies>

 <dependency>

 <groupId>com.somecompany</groupId>

 <artifactId>xmlBinding</artifactId>

 <version>1.0</version>

 </dependency>

 <dependency>

 <groupId>geronimo-spec</groupId>

 <artifactId>geronimo-spec-j2ee-connector</

 artifactId>

 <version>1.0-M1</version>

 <scope>provided</scope>

 </dependency>

 </dependencies>

</project>

 It’s time to add connector implementa-
tion Java classes. The source files that we
developed for the connector are shown in
Figure 4.
 Download and review the source files
to understand the complete implementa-
tion. However, the important classes to
note are ‘EmployeeInfoCCIConnection,’
‘EmployeeInfoCCIInteraction,’ and ‘Em-
ployeeInfoSPIManagedConnection.’ The
sequence diagram as shown in Figure 5
gives a high-level view of the method calls
that a client will invoke to retrieve em-
ployee information using an employee ID.
For brevity’s sake, the sequence diagram is
kept simple.

 The RAR artifact for the ‘connector’
module can be created by adding ‘ma-
ven-rar-plugin.’ By default, this plug-in
will look for RAR meta-information such
as the ‘ra.xml’ descriptor file under the
‘src/main/rar/META-INF’ directory. The
‘ra.xml’ descriptor is in Listing 1.

Static Analysis of Code using Maven
 Errors in the code are typically
detected via code reviews, unit testing,
system testing, integration testing, and
user-acceptance testing. Code reviews
certainly help in early bug detection by
enforcing language-specific program-
ming standards and best practices.
However code reviews are carried out
manually and hence the process can be
cumbersome and inefficient particularly
in case of large projects. Static analysis
is a tool-based automated code review
mechanism typically used to find code
defects early in the build phase. Static
analysis ensures early bug detection and
remediation by comparing source code
with predefined language patterns. It also
helps in enforcing coding conventions
and thereby improves code quality.
 PMD is a static analysis tool for
Java code. PMD packages a number
of ready-to-run rules that can identify
unused variables, unnecessary object
creation, and empty catch blocks in

Development

by Murali Kashaboina

 and Geeth Narayanan
Introduction to Maven

I

Murali Kashaboina is a lead

architect at Ecommerce Tech-

nology, United Airlines, Inc.

He has more than 10 years of

enterprise software develop-

ment experience utilizing

a broad range of technolo-

gies, including JEE, CORBA,

Tuxedo, and Web services.

Murali previously published

articles in WLDJ and Silver-

Stream Developer Center.

He has master’s degree in

mechanical engineering

from the University of

Dayton, Ohio.

murali.kashaboina@
united.com

Part III – Application development management using Maven 2 and Eclipse

 Figure 1

19August 2007JDJ.SYS-CON.com

the source code. Custom rules can also be
incorporated. PMD can be executed using
Maven by including ‘maven-pmd-plugin’
in the POM file as shown in the follow-
ing snippet. The PMD plug-in lets you
automatically run the PMD code analysis
tool on your project’s source code and gen-
erate a site report with its results. For more
information on the PMD Maven plug-in,
refer to plug-in documentation available
at http://maven.apache.org/plugins/ma-
ven-pmd-plugin/.

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-pmd-plugin</artifactId>

 </plugin>

 PMD plug-in can be invoked at the com-
mand line within the module directory by
running the command below. However, with
the current implementation, the plug-in
will generate reports only in case of ‘jar,’
‘war,’ and ‘ejb’ POM packaging types. Since
the current POM is a ‘rar’ packaging type,
the packaging type should be temporarily
changed to ‘jar’ so that PMD plug-in can
generate the reports.

 mvn pmd:pmd

 When this command is executed after
temporarily changing the packaging type
to ‘jar,’ Maven will invoke the PMD plug-in
that will run the code analysis and create
reports under the ‘target/site’ directory
with the main report in the ‘pmd.html’ file.
Figure 6 is the report generated for the ‘con-
nector’ module source code. Make sure to
reset the packaging type back to ‘rar.’

Packaging and Installing
‘Connector’ Artifacts
 With the current implementation of the
plug-in, the plug-in won’t automatically cre-
ate a separate JAR file for the module classes.
If the JAR file for the current classes is created
separately, there’s an option to include the
JAR in the final RAR file. Note that the pack-
aging type for the current module is ‘rar’ and
so no separate JAR file is created for the ‘con-
nector’ classes. This means that we’ll have to
explicitly add a separate plug-in to create the
JAR file. This is very simple to do just by add-
ing ‘maven-jar-plugin’ to the POM file. Note
that the JAR plug-in should be put before the
RAR plug-in since the plug-ins are executed
in the order they appear in the POM file. The
plug-in configuration added to the POM file
is in Listing 2.
 Note that by default both plug-ins get
executed during the ‘package’ phase of the

Maven lifecycle. To deploy the ‘connector’
RAR artifact to the local repository, right-
click on the module’s POM file in Eclipse
and then in the ‘Run As’ options, select
‘Maven2 install.’ Maven will execute the
configured plug-ins to build both JAR and
RAR files in the ‘target’ build directory and
will copy over the primary artifact, the RAR
file, to the local repository along with the
POM information.

Attaching Additional Artifacts
 Sometimes, you may have to deploy
additional artifacts to the Maven reposi-
tory. For example, in the case of ‘connec-
tor’ module, we can attach the JAR file as
an artifact along with the primary RAR
artifact. This is fairly easy to do by using
‘build-helper-maven-plugin’ from the
‘org.codehaus.mojo’ plug-in group. The
snippet below shows the configuration
for the plug-in to attach the JAR file as an
additional artifact.

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>build-helper-maven-plugin</artifac-

tId>

 <executions>

 <execution>

 <id>attach-artifacts</id>

 <phase>package</phase>

 <goals>

 <goal>attach-artifact</goal>

 </goals>

 <configuration>

 <artifacts>

 <artifact>

 <file>${project.build.directory}/${project.

 build.finalName}.jar</file>

 <type>jar</type>

 </artifact>

 </artifacts>

 </configuration>

 </execution>

</executions>

</plugin>

 Please refer to the plug-in documentation
at http://mojo.codehaus.org/build-helper-
maven-plugin/index.html for additional
information. After adding ‘build-helper-
maven-plugin’ to the POM file, redeploy the
‘connector’ to the Maven repository and you
should see the JAR file along with the RAR file
deployed in the local repository as shown in
Figure 7.

Setting Up an ‘ejb’ Module
 We’ll move on to create an ‘ejb’ module
with a default Maven project. To do this, go
to the ‘EmployeeInfo’ directory on the com-
mand prompt and execute the following
Maven command:

mvn archetype:create -DgroupId=com.some-
company -DartifactId=ejb –Dversion=1.0

 Refresh the ‘EmployeeInfo’ project in
Eclipse and update the Maven source
directories. Delete the sample Java class
and its JUnit Test case. As in the case earlier,
we’ll use Maven’s project inheritance model
as described before and remove redundant
version, group, and common dependency
information from the ‘ejb’ POM file. Since this
module will yield an EJB artifact, we’ll change
the packaging type to ‘ejb’ in the POM.
 The ‘ejb’ module provides a stateless
session bean that internally invokes the JCA
connector to retrieve the Employee info XML
object. This implies that the ‘ejb’ module will
have dependencies on both ‘xmlBinding’
and ‘connector’ artifacts. However, since the
‘connector’ module already depends on the
‘xmlBinding’ module, it’s sufficient to include
dependency on the ‘connector’ artifact alone
since Maven will transitively resolve depen-
dencies and thereby transparently include
dependency on the ‘xmlBinding’ artifact.
Note that this module also needs compile-
time EJB specification classes and classes
from the J2EE connector specification as the
Session bean refers to some of J2EE connec-
tor classes internally. We’ll add dependencies

 Figure 2 Figure 3

JDJ.SYS-CON.com20 August 2007

on ‘geronimo-spec-ejb-1.0-M1.jar’ and
‘geronimo-spec-j2ee-connector-1.0-
M1.jar’ with a scope value of ‘provided.’
 Finally, we’ll add ‘maven-ejb-plugin,’
which gets executed during the ‘package’
phase and can build both the EJB JAR
and EJB client JAR. Note that any client
module that invokes an EJB can only
include an EJB client JAR artifact as a
dependency without dependency on the
actual EJB JAR. This type of dependency
inclusion will be shown later. Generating
an EJB client JAR can be done by setting
the ‘generateClient’ plug-in configuration
element to true. Note that the contents of
the EJB client JAR file can be customized
using ‘clientIncludes’ and ‘clientExcludes’
plug-in configuration elements. By de-
fault, the plug-in excludes the following
from the EJB client JAR.
• **/*Bean.class
• **/*CMP.class
• **/*Session.class
• **/package.html

 The plug-in doesn’t do any ejb-spe-
cific processing during the generation
of the EJB JAR except for validating the
existence of an ejb deployment descrip-
tor if the ejb version is 2.0+. By default the
plug-in assumes the 2.1 version. In EJB3,
the ‘ejb-jar.xml’ deployment descrip-
tor isn’t required and in such cases, the
exact version to be used can be specified
using the ‘ejbVersion’ plug-in configura-
tion element. For more information
on ‘maven-ejb-plugin’ see the plug-in
documentation at http://maven.apache.
org/plugins/maven-ejb-plugin/index.
html.
 The ‘ejb-jar.xml’ file and application
server-specific EJB descriptor file should

be put under the ‘src/main/resources/
META-INF’ directory. The ‘maven-ejb-
plugin’ by default picks them up from
that location while building the EJB
archive file. We’ll add the necessary EJB
source files for this module as shown in
Figure 8. Please download and review
the source code to understand the
implementation.
 The ‘GetEmployeeInfoRemote’
interface defines the business method
‘getEmployeeInfo (String employeeId).’
The ‘GetEmployeeInfoBean’ is the state-
less session bean class that provides a
concrete implementation for ‘getEm-
ployeeInfo’ method as shown below.

public Employee getEmployeeInfo(String

employeeId) throws Exception {

 Employee employee = null;

 try {

 ConnectionFactory connectionFactory =

getConnectionFactory();

 Connection connection = connectionFac-

tory.getConnection();

 RecordFactory recordFactory = connection-

Factory.getRecordFactory();

 MappedRecord input = recordFactory.create

MappedRecord(“EmployeeInfoInput”);

 input.put(EmployeeInfoCCIRecordFactory.

EMPLOYEE_ID_INPUT, employeeId);

 MappedRecord output = recordFactory.

createMappedRecord(“EmployeeInfoOutput”);

 Interaction interaction = connection.cre-

ateInteraction();

 interaction.execute(null, input, output);

 employee = (Employee) output.get(Employee

InfoCCIRecordFactory.EMPLOYEE_RESULT);

 } catch (Exception e) {

 throw e;

 }

 return employee;

}

Development

Geeth Narayanan is

a senior architect at

Ecommerce Technol-

ogy, United Airlines,

Inc. He has 10 years

of experience in the IT

industry, specializing

in solutions using Java

EE technologies. Geeth

has master’s degree in

electrical engineering

from the University of

Toledo, Ohio.

geethakrishn.
narayanan@united.com

 Figure 4

 Figure 5

 Figure 6

 Figure 7

21August 2007JDJ.SYS-CON.com

 Note that the ‘getEmployeeInfo’ method
internally calls ‘getConnectionFactory’ method
to get a reference to the actual connection fac-
tory. The ‘getConnectionFactory’ is a protected
method, as shown below, and helps in making
the bean testable.

protected ConnectionFactory getConnection-

 Factory() throws Exception {

 Context context = new InitialContext();

 return (ConnectionFactory) context.lookup

 (connectionFactoryJNDIName);

}

Running JUnit Tests Using Maven
 We’ll create a JUnit test case for ‘GetEm-
ployeeInfoBeanTest’ under the ‘src/test/java’
directory with one ‘testGetEmployeeInfo’ test
method as shown below:

public class GetEmployeeInfoBeanTest extends

TestCase {

 public void testGetEmployeeInfo() throws Exception

{

 String employeeId = “1000”;

 GetEmployeeInfoBean employeeInfoBean = new

GetEmployeeInfoBean() {

protected ConnectionFactory getConnectionFactory()

throws Exception {

EmployeeInfoSPIManagedConnectionFactory managedCon-

nectionFactory = new EmployeeInfoSPIManagedConnecti

onFactory();

 return (ConnectionFactory)managedConnectionFa

ctory.createConnectionFactory();

 }

 };

 Employee employee = employeeInfoBean.getEmployee

Info(employeeId);

 assertNotNull(employee);

 assertTrue(employee.getId().equals(employeeId)

);

 }

}

 To run the test cases using Maven, right-click
on the module’s POM file in Eclipse and then
in ‘Run As’ options, select ‘Maven2 test.’ Maven
will compile the Java files found in ‘src/test/java’
and execute JUnit test cases. The result of test
case execution can be found in the console.

Skipping Maven Test Execution
 Maven will execute test cases whenever a
‘test’ phase or any other phase that occurs after
a ‘test’ phase in the Maven lifecycle manage-
ment is invoked. For example, Maven will
execute test cases when a Maven ‘package’ or
‘install’ phase is invoked. Maven does this by
triggering ‘maven-surefire-plugin’ mojo at the
time of the ‘test’ phase. This plug-in is respon-
sible for executing the JUnit test cases found in
the ‘test-classes’ directory in the project target
build directory.
 Test case execution can be explicitly skipped
for compelling reasons. There are a couple of
ways to make Maven skip test execution. One
way is to explicitly include ‘maven-surefire-plu-
gin’ in the POM file and set the value of the ‘skip’
configuration element to ‘true’ as shown here:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <skip>true</skip>

 </configuration>

 </plugin>

 If Maven is executed at the command line,
test case execution can be skipped by setting
the ‘maven.test.skip’ system property to ‘true’ as
shown below:

mvn –Dmaven.test.skip=true install

 Test cases can also be selectively skipped.
This can be done by including ‘maven-sure-
fire-plugin’ in the POM and explicitly specify-
ing test classes using wildcard patterns in the
‘excludes’ configuration element as shown in
the following snippet:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <excludes>

 <exclude>**/*FunctionTest.java</exclude>

 </excludes>

 </configuration>

 </plugin>

 For more information on ‘maven-surefire-
plugin,’ see the plug-in documentation at
http://maven.apache.org/plugins/maven-
surefire-plugin/index.html.

Reporting Source Code Test Coverage
Using Maven
 Code coverage is a measure of how thor-
oughly test cases exercise the main applica-
tion source code. This is an indirect way of
measuring the quality of the tests. Code cov-
erage is a type of white-box testing as logical
test assertions are made against the internals
of our classes and not against other subsys-
tems or components the current application
may interact with. Code coverage helps to
isolate logical paths in the source code that
aren’t exercised under the test.
 There are many tools to measure code cover-
age. Cobertura is an open source tool that can
be used to measure test coverage. Cobertura
instruments the code base and tracks lines of
code that are being executed and lines that
aren’t being executed as the test suite runs.
Besides identifying untested code, Cobertura
can also optimize code by flagging dead and
unreachable code. Cobertura has a Maven
plug-in that can be configured in the POM. The
plug-in has a set of goals that can be invoked
separately. For more information on Cobertura
Maven plug-ins, refer to plug-in documenta-
tion at http://maven-plugins.sourceforge.
net/maven-cobertura-plugin/. We’ll add the

 Figure 8

 Figure 9

 Figure 10

JDJ.SYS-CON.com22 August 2007

following plug-in configuration to the ‘ejb’
module POM.

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>cobertura-maven-plugin</artifac-

tId>

 <version>2.0</version>

 <executions>

 <execution>

 <goals>

 <goal>cobertura</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 The Cobertura plug-in can be invoked at
the command line in the module directory
by running the command:

 mvn cobertura:cobertura

 When this command is executed, Maven
will invoke the Cobertura plug-in so it can
instrument the source code and measure

test coverage. This plug-in will compile the
instrumented code separately and generate
the compiled instrumented classes under
the ‘target/generated-classes’ directory. The
coverage reports will be typically generated
under the ‘target/site/cobertura’ directory as
shown in Figure 9.
 The report can be viewed by opening
‘index.html’ in a browser as shown in Figure
10.
 The line coverage is only 48% since we
have only one simple test case. However,
coverage can be increased by inspecting the
class in the report to check which methods
and lines aren’t covered and by adding
sufficient cases to test different logical con-
ditions so that almost all lines of code get
executed. Typically a code base is consid-
ered to be under good test coverage if the
line coverage is more than 80%, although
achieving upwards of 90% isn’t that hard
with the appropriate test setup.

Packaging and Installing ‘ejb’ Artifacts
 Listing 3 is the final modified POM file
for ‘ejb’ module and Listing 4 is the ‘ejb.xml’
file that should be under the ‘src/main/re-
sources/META-INF’ directory. (Listings 4
and 5 can be downloaded from the online
version of this article at http://java.sys-
con.com).
 To deploy an ‘ejb’ artifact to a local
repository, right-click on the module’s
POM file in Eclipse and then in the ‘Run As’
options select ‘Maven2 install.’ Maven will
execute ‘maven-ejb-plugin’ to install both
EJB JAR and EJB client in the local reposi-
tory along with POM information as shown
in Figure 11.

Setting Up a ‘web’ Module
 The creation of ‘web’ modules is fairly
simple using Maven. Maven provides a ‘ma-
ven-archetype-webapp’ archetype to create
the Web application project directory struc-
ture. We’ll use ‘maven-archetype-webapp’ to
create a ‘web’ module. To do this, go to the
‘EmployeeInfo’ directory on the command
prompt and execute the Maven command:

mvn archetype:create -
DarchetypeGroupId=org.apache.maven.
archetypes -DarchetypeArtifactId=maven-
archetype-webapp -DgroupId=com.some-
company -DartifactId=web -Dversion=1.0

 Maven creates the ‘Web’ module direc-
tory structure as shown in figure 13. Note
that ‘maven-archetype-webapp’ creates a
‘web/src/main/webapp’ directory contain-

ing a default ‘index.jsp’ page and a ‘WEB-
INF’ directory containing a ‘web.xml’ file.
Even though an ‘src/main/java’ directory
isn’t created, any source code needed by
the Web application can be put in that
directory. Similarly any JUnit test cases
for the Web application can be put in the
‘src/test/java’ directory. Note that ‘maven-
archetype-webapp’ creates a ‘web/src/main/
resources’ directory that can be used for
storing any application resources such as
properties files that will be needed in the
runtime classpath (see Figure 12).
 Refresh the ‘EmployeeInfo’ project in
Eclipse and update the Maven source
directories. As was the case earlier, we will
use Maven’s project inheritance model to
remove any redundant version, group, and
common dependency information from
the ‘web’ POM file. Note that by default
POM file has a packaging type set to ‘war.’
 The ‘web’ module is a very simple Web
application that consists of an index page
containing a simple HTML form. The form
has a text field to input Employee IDs. When
the form is posted with an Employee ID, the
HTTP request is received and processed by a
Struts action. The Struts action retrieves the
employeeId, looks up the stateless session
EJB ‘GetEmployeeInfoBean,’ and invokes the
‘getEmployeeInfo’ method to retrieve the
Employee details.
 The Struts action then stores the Em-
ployee details Castor object as a request at-
tribute and forwards the request to the ‘em-
ployeeInfo.jsp’ page. The ‘employeeInfo.jsp’
page uses JSTL tags to render the Employee
information. This description implies that
the ‘web’ module will have dependen-
cies on ‘ejb,’ ‘xmlBinding,’ ‘castor,’ ‘struts,’
and ‘jstl’ artifacts. However, since the ‘ejb’
module depends internally on ‘xmlBind-
ing’ and since ‘xmlBinding’ depends on
the‘castor’ artifact, it’s sufficient to include
dependency on the ‘ejb’ artifact without any
need to explicitly include dependencies on
‘xmlBinding’ and ‘castor’ since Maven will
transitively resolve dependencies. We’ll add
dependencies on the ‘struts-1.2.4.jar’ and
‘jstl-1.1.2.jar’ artifacts in the POM file. Note
that this module also needs compile time
servlet and EJB specification classes. We’ll
add dependencies on ‘geronimo-spec-j2ee-
1.0-M1.jar’ with a scope value of ‘provided’.
 Listing 5 is the modified POM.
 Note the highlighted dependency decla-
ration for the ‘ejb’ artifact. We included the
‘type’ element with a value of ‘ejb-client’ to
indicate to the Maven dependency manager
to include the EJB client JAR instead of an

Development

 Figure 11

 Figure 12

23August 2007JDJ.SYS-CON.com

EJB main JAR as a dependency. As described
earlier in the context of the ‘ejb’ module, we
explicitly forced the ‘maven-ejb-plugin’ to cre-
ate a client JAR along with a main EJB JAR. As
a result of the above declaration, the Maven
dependency manager will include ‘ejb-1.0-cli-
ent.jar’ in the Web application classpath.
 We’ll add the source code, JSPs, ‘web.
xml,’ and ‘struts-config.xml’ files for the ‘web’
module as shown in Figure 13.

Packaging and Installing the ‘web’ Module
 To deploy a ‘web’ artifact to the local reposi-
tory, right-click on the module’s POM file in
Eclipse and then in ‘Run As’ options, select
‘Maven2 install.’ Maven will compile, package,
and install the ‘web-1.0.war’ artifact in the local
repository along with the POM information.

Setting Up an ‘ear’ Module
 Setting up an ‘ear’ module is fairly easy.
We’ll use the command below to create a
basic Maven project in the ‘EmployeeInfo’
directory and edit the POM to change the
packaging type to ‘ear’ and remove redundant
group, version, and dependency information
since such information is inherited from par-
ent POM.

 mvn archetype:create -DgroupId=com.
somecompany -DartifactId=employeeInfoEA
R –Dversion=1.0

 To build an EAR file, the first step would
be to add ‘maven-ear-plugin’ to the POM
file. The EAR plug-in replaces the Jar plug-in
when the project <packaging> is set to ‘ear.’
This plug-in can generate an ‘application.
xml’ file based on the plug-in configura-
tion information provided in the POM. The
plug-in configuration provides the ability
to add different J2EE modules such as RAR,
EJB, JAR, and WAR. Note that the ‘maven-
ear-plugin’ will include different modules in
the final EAR file that are declared under the
<modules> element in the plug-in configu-
ration using a module-specific configura-
tion element such as <rarModule>. All the
modules that will be included under the
plug-in configuration should be declared as
dependencies in the POM file. The following
are the common configuration options avail-
able for the module-specific configuration
element:
• groupId – Sets the groupId of the current

artifact you want to configure.
• artifactId – Sets the artifactId of the current

artifact you want to configure.
• classifier – Sets the classifier of the cur-

rent artifact you want to configure if mul-

tiple artifacts under the ear matches the
groupId/artifact.

• bundleDir – Sets the location of current
artifact inside the ear archive. If not set, the
current artifact will be packaged in the root
of the archive.

• bundleFileName – Sets the new name for
the current artifact inside the ear archive. If
not set, the artifact’s filename in the reposi-
tory is used.

• excluded – Set to true to exclude the cur-
rent artifact from being packaged into the
ear archive. Default is false.

• uri – Sets the uri path of the current artifact
within the ear archive. Automatically deter-
mined when not set.

• unpack – Set to true to unpack the current
artifact into the ear archive according to its
uri. Default is false.

Including JEE Modules in EAR
 The RAR module can be included in
the EAR by configuring the <rarModule>
element in the plug-in POM configuration.
Similarly the EJB module can be included
in the EAR by configuring the <ejbModule>
element in the plug-in POM configuration
and by including a dependency on the EJB
module in the POM.
 The inclusion of the WAR module is
similar as well using <webModule>. How-
ever, <webModule> provides the additional
configuration option ‘contextRoot’. This can
be used to set a Web application context
root name different from the actual Web ap-
plication artifact name. We’ll use this option
in our ‘Web’ module to set the context root
as ‘/employeeInfo’. We’ll also explode this
artifact in the EAR by setting the ‘unpack’
configuration option to true. The modi-
fied POM is shown in Listing 5. For more
information on the ‘maven-ear-plugin,’ go
to http://maven.apache.org/plugins/ma-
ven-ear-plugin/.

Packaging & Installing an ‘ear’ Module
 To deploy an ‘ear’ artifact to the local
repository, right-click on the module’s POM
file in Eclipse and, in ‘Run As’ options, select
‘Maven2 install.’ Maven will compile, pack-
age, and install the ‘employeeInfoEAR-1.0.ear’
artifact in the local repository along with the
POM information. The same result can be
achieved by running the ‘mvn clean install’
command from the command prompt inside
the ‘employeeInfoEAR’ directory. Note that at
any given point of time, the entire application
can be built and installed to the local reposi-
tory by executing an ‘mvn install’ command
from within the parent ‘EmployeeInfo’ direc-

tory. This can also be achieved by right-click-
ing on the parent ‘EmployeeInfo’ POM file in
Eclipse and, in the ‘Run As’ options, selecting
‘Maven2 install.’ When this is invoked, Maven
will build and install each individual child
module found in the parent POM.

Conclusion
 In this article, we attempted to explain
the working nature of Maven 2 through an
example. We showed how it can be used in
typical J2EE application development. Maven
2 is certainly a powerful tool that significantly
simplifies and standardizes build process
management. By following a set of standard
principles and core competencies, Maven 2
considerably increases a software developer’s
productivity by eliminating the grunt work
typically incurred during application develop-
ment. Maven 2 reuses build logic in the form
of easy-to-use plug-ins and offers a cornu-
copia of useful features for build process
management.
 In this article, we only scratched the
surface of Maven 2’s capabilities and software
developers can definitely take advantage of
many other Maven 2 features like continuous
integration support and project communica-
tion management. The more one uses Maven
2, the greater one appreciates its merits.

Acknowledgements
 We’d like to thank our managing direc-
tors Bill Bernahl and Gail Dielman for their
support and inspiration in writing this article.
Our special thanks to our colleagues Todd
August, Saya Alur, Huachao Li, and Prasad
Nagu for spending their time reviewing the
article, patiently exercising the example, and
providing valuable feedback. Without their
support, the article would not have been fin-
ished. Thanks to the rest of our team mem-
bers who inspired us to write this article.

–Listings 1–3 are on page 24

 Figure 13

JDJ.SYS-CON.com24 August 2007

Development

Listing 1
<!DOCTYPE connector PUBLIC ʻ-//Sun Microsystems, Inc.//DTD Connector
1.0//ENʼ ʻhttp://java.sun.com/dtd/connector_1_0.dtdʼ>
<connector>
 <display-name>Employee Info Connector</display-name>
 <vendor-name>SomeCompany</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>EmployeeDB</eis-type>
 <version>1.0</version>
 <resourceadapter>
 <managedconnectionfactory-class>com.somecompany.connector.Employee
InfoSPIManagedConnectionFactory</managedconnectionfactory-class>
 <connectionfactory-interface>javax.resource.cci.
ConnectionFactory</connectionfactory-interface>
 <connectionfactory-impl-class>com.somecompany.connector.EmployeeIn
foCCIConnectionFactory</connectionfactory-impl-class>
 <connection-interface>javax.resource.cci.Connection</connection-
interface>
 <connection-impl-class>com.somecompany.connector.EmployeeInfoCCICo
nnection</connection-impl-class>
 <transaction-support>NoTransaction</transaction-support>
 <config-property>
 <config-property-name>EisProductName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>Employee Info Connector</config-prop-
erty-value>
 </config-property>
 <config-property>
 <config-property-name>EisProductVersion</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>1.0</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>UserName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>SomeCompanyUser</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>MaxConnections</config-property-name>
 <config-property-type>java.lang.Integer</config-property-type>
 <config-property-value>10</config-property-value>
 </config-property>
 <reauthentication-support>false</reauthentication-support>
 </resourceadapter>
</connector>

Listing 2
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</
groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <id>jarCreation</id>
 <goals>

<goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

...

<plugin>
 <groupId>org.apache.maven.plugins</
groupId>
 <artifactId>maven-rar-plugin</artifactId>
 <executions>
 <execution>
 <id>rarCreation</id>
 <goals>

<goal>rar</goal>
 </goals>
 <configuration>

<includeJar>false</includeJar>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</
groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

Listing 3
<project>
 <parent>
 <artifactId>EmployeeInfo</artifactId>
 <groupId>com.somecompany</groupId>
 <version>1.0</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>ejb</artifactId>
 <packaging>ejb</packaging>
 <name>ejb</name>
 <dependencies>
 <dependency>
 <groupId>geronimo-spec</groupId>
 <artifactId>geronimo-spec-ejb</artifactId>
 <version>1.0-M1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>geronimo-spec</groupId>
 <artifactId>geronimo-spec-j2ee-connector</artifac-
tId>
 <version>1.0-M1</version>
 <scope>provided</scope>
 </dependency>
<dependency>
 <groupId>com.somecompany</groupId>
 <artifactId>connector</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

...

<build>
 <plugins>
 <plugin>
 <artifactId>maven-ejb-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>

<addClasspath>true</addClasspath>
 </manifest>
 </archive>
 <generateClient>true</gener-
ateClient>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</arti-
factId>
 <version>2.0</version>
 <executions>
 <execution>
 <goals>

<goal>cobertura</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

JDJ.SYS-CON.com26 August 2007

he Java development platform
always provides limited support for
application development based on
a graphical user interface, an area

where more traditional languages and inte-
grated development environments (IDEs)
such as Visual Basic or Delphi have based
their success.
 Today the Java SE distribution offers es-
sentially the same features it offered in 1999
with regards to Java graphical components:
the Swing toolkit. Swing provides graphi-
cal components like grids, trees, text fields,
checkbox, radio button, combo-box and
others. Anyway these components have
changed little and not been improved in
latest releases of Java. All in all Swing greatly
lacks some key aspects:
• Input fields are too simple. They can’t be

compared with the advanced graphical
components available in other languages.
They don’t support common proper-
ties like text trim, padding, text length
checking, uppercase; moreover there’s no
numeric field, currency field, date control
or calendar control. There’s no relation-
ship between the input field and interna-
tionalization settings.

 In addition, Swing components are just
hard to use. For example, creating a pow-
erful table with editing capabilities, colors,
data formatting, column or row locking
usually requires a lot of code, time, and
skills. A more powerful and easier set of
components is needed to develop rich
GUIs, especially for beginner Swing

 programmers.
• There’s no binding mechanism between

graphical components and the data
model. This means that to set or get data
from or to a data model based on POJOs
(Plain Object Java Object, i.e., Java Beans)
requires additional coding, not provided
by the Swing toolkit.

• There’s no data retrieval layer between
the presentation tier and business logic/
data access layers that facilitates and nor-
malizes data exchange with the presenta-
tion tier and other layers.

 All these deficiencies don’t encourage
the development of enterprise applications
with rich GUI content and based only on the
Swing toolkit.
 This gap in Java was partly covered in the
past years, thanks to solutions supplied by
the market in the shape of commercial and
open source solutions, but without reaching
any definition of a reference standard.
 Commercial solutions should be discard-
ed because they’re proprietary, not directed
by the market, and in plain disagreement
with the “Java philosophy” of open source so-
lutions or solutions supported and promoted
by the market, led through mechanisms
of sharing and the collective definition of
standards such as JCP (the Java Community
Process).
 With regard to open source solutions,
there are several Swing extensions, born to
provide:
• a suite of advanced graphics components
• a binding layer between graphics controls

and data model

• a framework that defines guidelines to
design an application and its components
and use these components correctly

• a data retrieval mechanism that (prefer-
ably) abstracts from the real location of
the data (locally or remotely)

 There are many free solutions available
that meet some of these topics, such as JMat-
ter, JGoodies, JDNC (Java Desktop Network
Components) and its evolution, the Swing
Application Framework, currently submit-
ted for approval to JCP. There are other open
source projects that fit specific issues, as
those reported on the JavaDesktop portal.
 However these solutions address some is-
sues (like the availability of advanced graphics
controls or data binding capability) but not
all the issues that could arise in enterprise ap-
plication development with rich GUI content
and not always applicable on different archi-
tectures (both two- and three-tier applica-
tions, with data communications based on
HTTP or SOAP or RMI or any other protocol).

Product Review

by Mauro Carniel

Developing Rich Internet
Applications Using Swing

T

Mauro Carniel is an

architect at Tecnoin-

formatica Group. He

has more than 7 years

of enterprise software

development experi-

ence utilizing J2EE

based technologies,

including JSP, JSF,

Swing, EJB. He started

focusing more on GUI

based client/server

java applications since

1998. He has a MSc in

Information Technol-

ogy from University

of Udine, Italy.

maurocarniel@tin.it

A solution based on OpenSwing & Spring frameworks

 Figure 1

27August 2007JDJ.SYS-CON.com

 A good solution should include the capac-
ity to decouple GUI development from data
retrieval issues: this could facilitate application
development with several architectures, such
as two-layered applications (desktop applica-
tions) and three-layered applications (Rich
Internet Applications). This way the same
suite of graphics components and data bind-
ing mechanisms could be reused in different
application architectures.
 Broadly, there’s a need for a complete
solution: a framework (i.e., a set of develop-
ment guidelines) and a set of advanced Swing
components with data binding capabilities
and data retrieval mechanisms not limited to
a specific architecture to develop applications
having rich GUI contents quickly and easily.
 RIA development would become one of
the possible scenarios that issues from that
solution.
 A complete client-side solution should
integrate all these aspects and ideally fit with
existing server-side layers and frameworks:
in the context of server-side development,
especially in the context of Web application
development, valid frameworks already exist
such as Spring and effective ORM (Object to
Relational Mapping) layers like Hibernate,
iBatis, TopLink, JDO, and JPA; hence, it’s
unnecessary to develop other server-side
frameworks. It’s better to interconnect them
with the complete client-side solution.
 To realize this kind of client-side solution,
it’s possible to fit more client-side products
together, such as some of those described
above, but this attempt requires skills in many
products and a lot of time and isn’t a suitable
choice for organizations with low skills levels
and limited budgets.
 The OpenSwing framework addresses these
issues by providing a unique and uniform
client-side solution: it provides a suite of ad-
vanced graphics components that are usually
powerful enough that they don’t have to be
extended any further. They meet the develop-
ment requirements of enterprise applications
with rich GUI contents. The development
process becomes easier and faster by develop-
ing a GUI through IDEs’ graphical designers
like other non-Java RAD environments.
 At the same time, this framework provides
other software layers that complement the
OpenSwing graphics components suite by
supporting data binding, POJO-based data
modelling, and remote data access by allowing
the development of RIAs (three-layered client/
server applications) or desktop applications
(two-layered client/server applications).

OpenSwing
 OpenSwing is an open source framework
that can be used to develop Java applications
based on Swing’s front-end.

 It’s possible to apply this framework to de-
velop two-tier client/server applications with
an underlying database or based on other data
storage devices (like files on a file system) or
three-tier applications with several combina-
tions of technologies such as RIAs (where the
client and server tiers communicate through
the HTTP protocol) or distributed applications
(where the client and server tiers communi-
cate through RMI – see Figures 1, 2, and 3).
 The framework includes a set of class librar-
ies that can be used to:
• Create the application front-end through

a collection of advanced graphics controls
that include labels, text fields, multi-line

text fields, numeric fields, currency fields,
calendar, grid, trees, a tree combined with
a grid, lookup, gantt diagram, buttons
with images, combo-box, radio buttons,
checkbox, wizard panel, image panel,
splash screen, dialog windows, tip of the
day frame, progress bar/panel/dialog, and
a licence agreement panel.

 Grid usage is especially sophisticated: it
allows columns or rows locking, data pagi-
nation, columns filtering and sorting, and
data exporting and the grid model is based
on a list of POJOs like a tree component
and a panel of graphics controls whose
data model is based on a POJO.

 Figure 2 Three tier client server “web” application (RIA)

Server

 Figure 3 Distibuted three tier application

Server

JDJ.SYS-CON.com28 August 2007

So POJO support is extended to the entire set
of graphical components that compose the
GUI.

 The graphics controls are compliant with
Java Beans specifications so they can be
used in an IDE graphical designer environ-
ment like NetBeans, JBuilder, JDeveloper, or
Eclipse (when combined with the Window
Builder plugin) to create graphical windows
by drawing them in the graphical designer as
with other non-Java RAD environments.

 The framework can create applica-
tions based on the SDI (Single Document
Interface) or MDI (Multiple Document
Interface) paradigm and internal frames
including pull-down menus, tree menus,
and many front-end customization levels
(see Figure 4).

• Create a business logic + data-access tier
through a set of utility classes that simplify
the server-side development process; this
utility layer can be omitted and replaced by
other popular server-side frameworks, such
as Spring and combined with ORM layers
like Hibernate or iBatis; for these products
OpenSwing provides some helper classes
that makes them easy to embed.

• Create a data retrieval tier between the pre-
sentation tier (application front-end) and
business logic tier. This tier can be easily
extended by developing a communication
layer above the standard layer offered by
OpenSwing (HTTP-based) to meet specific
needs (such as RMI communication with
EJB, SOAP, or other communications mecha-
nisms with server-side applications).

 This framework also provides some basic
features that cover many issues that usually
arise in enterprise applications, such as data
extraction from grids, document viewing on
the most popular desktop applications (like
reports on Excel, Acrobat Reader, etc.), activities

logging, internationalization support (label
translation, date format, decimal symbols,
grouping, currency support, etc.), and authori-
zation management according to grants owned
by the connected user.
 All these framework layers strongly decouple
each other, so they can be used in a distinct way
according to specific needs. Each layer in the
framework depends on underlying layers of the
framework.
 The main software components of the
framework are reported in the schema (see
Figure 5).
 Framework classes are in large part related
to the graphics controls used in the presenta-
tion tier (orange color); other presentation tier
classes include data retrieval, managing events
fired by graphics controls, and client-side log-
ging (green color).
 The OpenSwing framework provides server-
side classes too not directly connected to pre-
sentation tier classes that can be applied with
three-tier applications (cian color) to simplify
the realization of the Web layer and data access
layer.
 The OpenSwing data access layer maps val-
ue objects (POJO objects) to SQL instructions
used to retrieve data from a relational database
or to insert/update records. Through this layer
the ORM activity (Object-to-Relational Map-
ping) is greatly simplified. It can be combined
with the rest of the server-side layer in the case
of three-tier client/server applications, or it can
be combined directly with the presentation
layer in two-tier client/server applications.
 It’s also possible to fully replace this layer
with other (more efficient) ORM products such
as Hibernate or iBatis.

Developing RIAs Using OpenSwing
& Spring Frameworks
 RIAs are three-tier applications with the
same features and functionality as traditional
desktop applications but typically run in a Web
browser and don’t require software installation.
 The rise of RIAs lately has become an impor-
tant topic in the Java community. Besides new
technologies like AJAX and Macromedia Flex,
the combination of Swing and Java Web Start
has also been proposed as a RIA technology.
However, HTML/AJAX or Flex technologies
aren’t without weakness like Swing.
 A possible solution is the combination of
OpenSwing and the Spring framework de-
ployed with Java Web Start.
 Spring is one of the most popular server-
side frameworks for developing Java Web
applications; it offers several advantages when
developing a Web application, such as facilities
to interconnect other technologies, like Hiber-
nate, iBatis, JSF, and Struts.

 The Spring framework has been designed to
strongly decouple server-side layers that com-
pose a Web application, like the data access
layer, transaction management, and presenta-
tion layer based on Web pages.
 Spring can easily be used in combination
with applications having a non-HTML front-
end too; in this case it’s still possible to use some
Spring features such as a data access layer and
transaction management without using other
layers such as the presentation layer based on
Web pages (JSP, JSTL, Turbine, etc). Hence,
Spring can be connected with GUIs based on
OpenSwing.
 The greater strengths of this combination are:
• Rich GUIs
• Good response time because communica-

tion between the client and server tiers is
limited to data exchange

• Development time of the rich GUI is lesser
than HTML/AJAX thanks to IDE graphical
designer adoption and the power of adopted
client-side solutions so development costs
are low too

• Application installation isn’t required
because updating and distributing the cli-
ent-side application is managed through
Java Web Start that caches this layer the first
time it’s been downloaded

• Users can use the client-side application
from any computer with an Internet con-
nection because client-side applications
communicate through the HTTP protocol
with server-side applications

• Client-side applications are compatible with
any operating system with a Java Virtual
Machine; this isn’t always true with HTML-
based applications where JavaScript/HTML
isn’t compatible with all browsers and oper-
ating systems

• Server-side application development is
based on an excellent framework: it’s pos-
sible to inherit all advantages that Spring
provides, such as XML-based configuration,
strong decoupling between server-side
layers, inversion of control, dependency
injection, transactions management, object
relational mapping, Aspect-oriented pro-
gramming, Spring Application Context, etc.

 OpenSwing provides utility classes that can
be used when combining it with the Spring
framework and when combining it with an
ORM product, such as Hibernate or iBatis to
simplify the management of client-side info
passed to the ORM layer and used to drive data
retrieval (filtering or sorting conditions, pagina-
tion settings, etc.).
 Utility classes provided by OpenSwing to
embed the Spring framework consist of:
• A HandlerMapping class to support HTTP

Product Review

 Figure 4 Example of a MDI application realized through

OpenSwing graphics components

JDJ.SYS-CON.com30 August 2007

requests originated from OpenSwing client-
side classes; such HTTP requests contain
serialized objects that must be managed on
the server side (e.g., action class to invoke,
filtering or sorting conditions, pagination
settings, etc.)

• An interceptor class to support client session
identification

• A ViewResolver class to support HTTP
responses to send to OpenSwing client-side
classes that expect POJOs as results.

 With this helper classes it’s possible to con-
nect an OpenSwing client-side application
having a Swing-based front-end to a server-side
application based on Spring using HTTP as the
communication protocol. Since only POJOs are
transmitted between client and server layers,
the response time is good, so this kind of appli-
cation can be successfully applied in Internet-
based environments such as RIAs.
 Behind Spring there’s usually a data access
layer typically based on some ORM tool such as
Hibernate or iBatis. When adopting Hibernate
or iBatis there are some utility classes provided
by OpenSwing that simplify the input process
originated from the client side: for example, fil-
tering or sorting conditions applied to a grid or

pagination issues automatically managed
through these utility classes to simplify their use
inside the ORM layer (see Figure 6).

Configuring an RIA with OpenSwing
and Spring
 When creating an RIA with an OpenSwing-
based GUI, it’s possible to use a classic Dis-
patcherServlet servlet provided with Spring as
the unique access point for all HTTP requests;
these requests come from the “ClientUtils.get-
Data()” utility method provided by OpenSwing
that can be used in a client-side application to
generate requests to the server-side applica-
tion: all data retrieval classes located in the
client-side application will use this utility
method to remotely contact the server-side via
the HTTP protocol.
 In any J2EE Web application there must be a
defined “WEB-INF/web.xml” file; with Spring
this is the first file to configure too. When com-
bining OpenSwing with Spring, a typical web.
xml content is like the one described in Listing 1.
 As shown in there, a DispatcherServlet serv-
let class is defined; moreover, other XML files
must be defined: they are the other classical
files required by Spring: applicationContext.xml
and dataAccessContext-….xml

 When defining the DispatcherServlet servlet,
Spring requires another XML file be created:
“xxx-servlet.xml” in which “xxx” is the name
of the servlet defined in the web.xml (in our
example: “controller”); Listing 2 shows the “con-
troller-servlet.xml” file.
 OpenSwing provides two main classes that
must be defined in this XML file:
• OpenSwingHandlerMapping – This job of

this class is to get all the requests coming
from the DispatcherServlet: these HTTP
requests always contain a serializable object
of the org.openswing.swing.message.send.
java.Command type that contains a server-
side bean name to invoke; this bean is a con-
troller type object recognized by the Spring
framework; all controller type beans in a
“controller-servlet.xml” file must be defined
as having as an “id” the “methodName”
values stored in the command object and
defined in the client-side layer.

 At this point the Spring framework is the
only actor: it’s possible to define a facade, dao
objects, transactions, and any other Spring
component. Consequently, it’s possible to
include any technology that Spring allows to
connect: ORM layers (such as Hibernate or
iBatis or TopLink or JPA), EJB, etc.

 The only constraint to respect is that the
value to return to the client-side must be an
object that extends org.openswing.swing.
message.response.java.Response. If the cli-
ent request is generated by a grid control
or a lookup then the return value must be a
VOListResponse; if the client request is gen-
erated by a form then the return value must
be a VOResponse type as with any other
application based on OpenSwing and not on
Spring (independent of the number of tiers,
two or three tiers).

• OpenSwingViewResolver – This class returns
a Response type object to the client side; this
object has been generated in the server-side
application and is given back through HTTP
by serializing the object.

 So OpenSwingViewResolver doesn’t ren-
der a Web page. It serializes objects for the
client-side application.

 It’s possible to include any kind of Intercep-
tor object in a Spring configuration as in any
application based on Spring. The OpenSwing-
HandlerMapping class provided by OpenSwing
always extracts the command serialized object
from the request and stores it as the request’s
attribute named OpenSwingHandlerMapping.
COMMAND_ATTRIBUTE_NAME. In this way
the command object is available to all intercep-
tor objects added to the application.
 Optionally OpenSwing provides an intercep-
tor class named SessionCheckInterceptor that

Product Review

 Figure 5

���
���
��
���
��
���
���
��
��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����
��
��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ������������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED

��

���

���

���

��

��

������������������������������������

����������������������������������
�������������������������������
����������������������������������
���

��

���

���

��

���

��

���

����������

��

���

��

������������������������������� ��

���������������������

�����������������������������
����������������������������
���������������

������������
��������������������
�����������������������

����������������������
������������������������������

VISIT WWW.AJAXWORLD.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

Hyatt Regency Silicon Valley
Santa Clara, CA

������������������������
������������������������������

��
���
��
��

�������������������������

�������������������

���
���
���

���

��
��������������������������

���
��

��
���
���
��
���

��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����

�����������
������������������
�����������
������������������

����������������
��������������������
����������������
�����������������
�������������

C
O

P
Y

R
IG

H
T

 ©
20

07
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

JDJ.SYS-CON.com32 August 2007

could be included in “controller-servlet.
xml” file: this interceptor checks each HTTP
request coming from the client side; Ses-
sionCheckInterceptor dispatches requests
only if the command object contains a session
identifier previously stored in the servlet
context (when the client was authenticated);
if a command object doesn’t contain a session
identifier or it contains a session identifier not
stored in the servlet context then the request
is rejected.

The choice of storing session identifiers in the
servlet context instead of in the session context
bound to the client derives from the nature of
three-tier client/server applications based on
the Swing front-end: these applications may
be started without a browser (for example, by
directly using Java Web Start), so that the tra-
ditional means of client session identification
(cookies or URL rewriting) can’t be applied
outside the browser. Consequently, session
info bindable to a client must be stored in the

servlet context and fetched starting from a
client session identifier that must be sent from
client to server in each command object.
 SessionCheckInterceptor class extracts the
client session identifier from the request
(through the Command.getSessionId
method) and checks in the ServletContext if
this identifier is stored. Session identifiers are
stored in a HashSet whose attribute name is
OpenSwingHandlerMapping. USERS_AU-
THENTICATED; if the identifier is stored
then the interceptor returns true, otherwise
it returns false and gives an org.openswing.
swing.message.response. java.ErrorResponse
object back to the client.

Resources
• JMatter - http://jmatter.org/
 • JGoodies - http://www.jgoodies.com/
 • JDNC – Java Desktop Network

Components: https://jdnc.dev.java.net/
 • JSR 296 - Swing Application Framework:

http://jcp.org/en/jsr/detail?id=296
 • JavaDesktop: http://community.java.net/

javadesktop/
 • OpenSwing Framework: http://oswing.

sourceforge.net
 • Spring Application Framework: www.

springframework.org
 • Hibernate Framework: www.hibernate.

org/
 • iBatis: http://ibatis.apache.org

Product Review

Listing 1
<?xml version=”1.0” encoding=”UTF-8”?>
 <!DOCTYPE web-app
 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>
 <web-app>
 <context-param>
 <param-name>log4jConfigLocation</param-name>
 <param-value>/WEB-INF/log4j.properties</param-value>
 </context-param>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/dataAccessContext-local.xml /WEB-INF/application-
Context.xml
 </param-value>
 </context-param>

 <listener>
 <listener-class>org.springframework.web.context.
ContextLoaderListener</listener-class>
 </listener>

 <servlet>
 <servlet-name>controller</servlet-name>
 <servlet-class>org.springframework.web.servlet.
DispatcherServlet</servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <servlet>
 <servlet-name>JnlpDownloadServlet</servlet-name>
 <servlet-class>com.sun.javaws.servlet.JnlpDownloadServlet</
servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>controller</servlet-name>
 <url-pattern>/controller</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>JnlpDownloadServlet</servlet-name>
 <url-pattern>/demo18.jnlp</url-pattern>
 </servlet-mapping>

 </web-app>

 Listing 2
<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD BEAN 2.0//EN” “http://www.spring-
framework.org/dtd/spring-beans-2.0.dtd”>
<beans>
 <bean id=”handlerMapping”
 class=”org.openswing.springframework.web.servlet.handler.
OpenSwingHandlerMapping”>
<!--
 <property name=”interceptors”>
 <list>
 <ref bean=”sessionCheckInterceptor”/>
 </list>
 </property>
-->
 </bean>
<!--
 <bean id=”sessionCheckInterceptor”
 class=”org.openswing.springframework.web.servlet.handler.
SessionCheckInterceptor”>
 <property name=”loginMehodName” value=”login”/>
 </bean>
-->
<!-- ====== DEFINITION OF LOGIN CONTROLLER ====== -->
 <bean id=”login” class=”demo18.server.LoginController”>
 <property name=”username” value=”admin”/>
 <property name=”password” value=”guest”/>
 </bean>

<!-- ====== VIEW DEFINITIONS ====== -->

 <bean id=”swingViewResolver”
 class=”org.openswing.springframework.web.servlet.view.
OpenSwingViewResolver”>
 </bean>

<!-- ====== DEFINITIONS OF PUBLIC CONTROLLERS ====== -->

…

</beans>

 Figure 6 Rich Internet Application based on OpenSwing and Spring

33August 2007

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 AJAXWorld Conference & Expo www.ajaxworld.com 201-802-3022 31

 Altova www.altova.com 978-816-1600 Cover II

 Business Objects www.businessobjects.com/rareoccurrence 888-333-6007 11

 CodeGear www.codegear.com 888-233-2224 25

 Infragistics www.infragistics.com/jsf 800-231-8588 4

 InterSystems www.intersystems.com/ja1p Cover IV

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 33

 Nexaweb dev.nexaweb.com 781-345-5500 29

 Red Hat Middleware www.redhat.com 866-273-3428 x45555 13

 SAP TechEd ’07 www.sapteched.com 7

 Software FX www.softwarefx.com 561-999-8888 Cover III

34 August 2007

t’s been busy at the JCP for Spec Leads,
Expert Groups, and Executive Commit-
tees over the summer. Quite a number of
new proposals were submitted and were

approved to be developed as JSRs; even more
moved to new development stages, drawing
closer to the finish line. And, I might add, that all
happened at a balanced pace, meeting both the
initial JSR development commitment and satis-
fying the rigors of developing complete RIs and
TCKs in most the cases. Here are some of them.
 Portlet Specification 2.0, JSR 286, posted its
Public Review Draft. This JSR sets out to develop
a binary-compatible updated version of JSR
168, Portlet Specification 1.0. It plans to add
functionality that was not addressed in the
first version of the specification. If you want to
check out the details of the draft, you have until
August 21 to review it and send your comments
to the Spec Lead and Expert Group. The JCP EC
will vote on the Public Draft between August
21–August 27 (http://jcp.org/aboutJava/com-
munityprocess/pr/jsr286/).
 JSR 196, Java Authentication Service Provider
Interface for Containers, was recently voted on
by the JCP Java SE/EE EC and approved as a
finalized standard with 10 votes out of 16. You
can view the ballot results at http://jcp.org/en/
jsr/results?id=4307. In the Spec Lead’s words,
Ron Monzillo, Sun Microsystems, the specifica-
tion defines a standard interface by which
authentication modules may be integrated with
containers in such a way that these modules
may establish the authentication identities used
by containers.
 At the beginning of its development, JSR
297, Mobile 3D Graphics API 2.0, from Nokia
Corporation, with Tomi Aarnio at the helm,
published its Early Draft Review, which can be
downloaded at http://jcp.org/aboutJava/com-
munityprocess/edr/jsr297/. The Spec Lead and
Expert Group tell us on the JSR Public Page that
“the proposed specification is a new revision
of JSR-184, Mobile 3D Graphics API for J2ME”
and promises “to extend and enhance Mobile
3D Graphics to better leverage state-of-the-art
hardware.”
 Led by a Star Spec Lead, Jaana Majakangas
of Nokia, JSR 293, Location API 2.0, published
its Public Draft in June. You can send your com-
ments to the JSR’s leads until September 4. We
learn from the JSR Public Page that JSR 293 is
intended to be a successor to JSR 179 and more.
Visit http://jcp.org/aboutJava/communitypro-

cess/pr/jsr293/index.html to learn more about
the approach of this JSR.
 A proposal for a new release of the Java
Platform, Enterprise Edition 6, was recently
submitted by Spec Leads Bill Shannon and
Roberto Chinnici of Sun Microsystems and was
approved on July 16 by the JCP Java SE/EE ECs.
The new release of Java EE 6 plans to focus on
extensibility to allow third-party libraries/ex-
tensions to fit easily with the rest of the Java EE
programming model. It also sets out to develop
rules for profiles and define the Web profile for
Web application developers. You’ll find a de-
tailed description of the JSR on the Public Page
at http://jcp.org/en/jsr/detail?id=316.
 Linda DeMichiel proposed a new persistence
project, JSR 317, Java Persistence API, on behalf
of Sun Microsystems. The purpose of the Java
Persistence 2.0 specification as described on the
JSR Public Page is to augment the Java Persis-
tence API to include further features requested
by the community. Visit the JSR Public Page for
details on the aspects the Expert Group plans to
consider (http://jcp.org/en/jsr/detail?id=317).
 Another JSR from Sun Microsystems,
Enterprise JavaBeans 3.1, JSR 318, is on the
Java SE/EE EC approval ballot at the time of
writing (http://jcp.org/en/jsr/detail?id=318).
The Enterprise JavaBeans 3.1 specification sets
out to accomplish two things: further simplify
the EJB architecture by reducing its complexity
from the developer’s point of view and add new
functionality in response to the needs of the
community.
 JSR 283, Content Repository for Java Technol-
ogy API Version 2.0, from Day Software, entered
Public Review recently. The specification is
the successor to JSR 170, the first standard
for content repositories. JSR 283 adds several
enhancements to the API to make it easier for
companies to simplify their repository archi-
tecture, increase efficiency, and reduce cost.
To download the Public Draft, go to http://jcp.
org/aboutJava/communityprocess/pr/jsr283/.
You have until September 4 to send in your
comments to the Spec Lead.
 Nokia and Motorola, co-Spec Leads of JSR
272, Mobile Broadcast Service API for Handheld
Terminals, published the Proposed Final Draft
2 of the specification at http://jcp.org/en/jsr/
stage?listBy=proposed. The JSR is targeted at
defining a common Java API to control and
access digital broadcast content from mobile
devices.

 JSR 256, Mobile Sensor API, has an updated
Final Release that you can access at http://jcp.
org/en/jsr/stage?listBy=final. This is another
Java ME JSR from Nokia. It fills the need for a
standard way of manipulating sensors for Java
ME applications. To accomplish this, it has
defined a unified way to manage sensors and
access sensor data.
 Nakina Systems, a manufacturer of telecom
network management systems, the Spec Lead
of JSR 254, OSS Discovery API, published the
Proposed Final Draft for the specification. The
JSR is essentially a standardization platform for
OSS components and an alternative to vendor-
proprietary APIs. Check the draft at http://jcp.
org/en/jsr/stage?listBy=proposed and send
your feedback to the Spec Leads.
 Two individual developers, Werner Keil
and Jean-Marie Dautelle, partnered as
co-Spec Leads to drive the development of
JSR 275, Units Specification. They recently
published the Early Draft Review of the spec,
which you can get and review from http://jcp.
org/aboutJava/communityprocess/edr/jsr275/
index.html.
 JSR 225, XQUERY API, published its Public
Review Draft 2. If you are interested in XML
and XML-related technologies, check it out at
http://jcp.org/aboutJava/communityprocess/
pr/jsr225/index.html. The JSR is spearheaded
by Oracle’s Jim Melton and sets out to develop a
standard for querying XML data.
 JSR 142, OSS Inventory API, published its
Maintenance Draft Review 3 at http://jcp.org/
aboutJava/communityprocess/maintenance/
jsr142/index3.html. Developed by MetaSolv
Software, the specification addresses the need
to provide standardization conventions that
allow interoperability of OSS components and
reduce the cost of their integration in an end-
to-end OSS solution.
 This summer brings more changes to the
JCP. If you checked the JCP.org Web site
recentlyand my blog (http://jroller.com/
page/OnnoKluyt),you know by now that I’m
stepping down as Chair of the JCP and moving
on to new roles and responsibilities within Sun.
Patrick Curran, who is a veteran of the software
industry and has a long-standing record in
conformance testing, is taking over from me as
Chair of the JCP. Congratulations, Patrick!
 Stay tuned for news and comments from
me in SYS-CON publications as I step into my
new role.

JSR Watch

Onno Kluyt

Estival JSRs

I

Onno Kluyt is

director of the

Community

Growth group at

Sun Microsystems

and the Chair of

the JCP.

onno@jcp.org

Changes, new chair of the JCP

JDJ.SYS-CON.com

Embed the world’s fastest object database.
A golden opportunity to make Java applications richer.
When you embed InterSystems Caché® in your applications, they become more valuable. Caché
dramatically improves speed and scalability while decreasing hardware and administration
requirements. This innovative object database runs SQL queries faster than
relational databases. And with InterSystems’ JALAPEÑO™ technology for Java
developers, Caché eliminates object-relational mapping. Which means Caché
doesn’t just speed up the performance of applications, it also accelerates their
development. Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and
it is deployed in more than 100,000 systems ranging from two to over 50,000 users. Embed
our innovations, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/Ja1P

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 7-07 ValCacheJa1 JDJ

Make Java
Applications

More
Valuable

ValCacheJa1_JDJ:Layout 1 7/11/07 3:17 PM Page 1

